Skip to main content

Modeling the Excitation Energy Capture in Thylakoid Membranes

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

The thylakoid membrane of organisms carrying out oxygenic photosynthesis is composed of a great variety of extrinsic and intrinsic peripheral light-harvesting complexes together with two types of core complexes that bind the cofactors of the reaction centers. In a complex interplay, the macromolecular supercomplexes perform an optimized conversion of light into chemical free energy. In the past decades much knowledge has accumulated on the structure and dynamics of the individual pigment-protein supercomplexes: This can be advantageously used to model light-harvesting in various kinds of thylakoid membranes and the distribution of excitation energy to the photosystems.

This chapter focuses on the experimental dissection and theoretical reassembly of the components of thylakoid membranes. By means of three examples it will be demonstrated how known structural building blocks are related to so-called states can be put together in reaction schemes. The mathematical treatment of such self-consistent reaction schemes which predicts unique solutions for all measurable quantities will be explicitly outlined. The solutions can be used to analyze experimental data (target analysis), to test their consistency with experimental data, and to predict experimentally difficult accessible quantities like: (i) quantum yields and (ii) the proportion in which the two photosystems are excited. Fluorescence induction, lateral energy transfer, distribution and redistribution of excitation energy between the photosystems (spillover), uphill energy transfer and low temperature data will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson P-Å (1995) The structure and function of the chloroplast photosynthetic membrane—a model for the domain organization. Photosynth Res 46: 141–149

    CAS  Google Scholar 

  • Alfonso M, Montoya G, Cases R, Rodriguez R, and Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant Photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33: 10494–10500

    PubMed  CAS  Google Scholar 

  • Allen JF and Nilsson A (1997) Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiol Plant 100: 863–868

    CAS  Google Scholar 

  • Bald D, Kruip J, and Rö;gner M (1996) Supramolecular architecture of cyanobacterial thylakoid membranes. How is the phycobilisome connected with the photosystems. Photosynth Res 49: 103–118

    CAS  Google Scholar 

  • Barber J, Nield J, Morris EP, and Hankamer B (1999) Subunit positioning in Photosystem II revisited. Trends Biochem Sci 24: 43–45

    PubMed  CAS  Google Scholar 

  • Bernhardt K and Trissl H-W (1999) Theories for kinetics and yields of fluorescence and photochemistry: How, if at all, can different models of antenna organization be distinguished experimentally? Biochim Biophys Acta 1409: 125–142

    PubMed  CAS  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R, and Dekker JP (1999) Multiple types of association of Photosystem II and its light-harvesting antenna in partially solubilizcd Photosystem II membranes. Biochemistry 38: 2233–2239

    PubMed  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318: 322–373

    CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, and P fander H (eds) Carotenoids. Vol 1B: Spectroscopy, pp 13-62. Birkhäuser Verlag, Basel

    Google Scholar 

  • Byrdin M, Jordan P, Krauss N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in Photosystem I: Modeling based on the 2.5 Å structure of Photosystem I from Synechococcus elongatus. Biophys J 83: 433–457

    PubMed  CAS  Google Scholar 

  • Cho F and Govindjee (1970a) Fluorescence spectra of Chlorella in the 295-77 K range. Biochim Biophys Acta 205: 371–378

    PubMed  CAS  Google Scholar 

  • Cho F and Govindjee (1970b) Low temperature (4-77K) spectroscopy of Anacystis; temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151–161

    PubMed  CAS  Google Scholar 

  • Chow, WS, Melis, A and Anderson, J.M (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87: 7502–7506

    PubMed  CAS  Google Scholar 

  • Comish-Bowden A (1995) Metabolic control analysis in theory and practice. Adv Mol Cell Biol 11: 21–64

    Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Bassi R, and Jennings RC (1996) Excited state equilibration in the Photosystem I lightharvesting I complex. P700 is almost isoenergetic with its antenna. Biochemistry 35: 8572–8579

    PubMed  CAS  Google Scholar 

  • Croce R, Dorra D, Holzwarth AR and Jennings RC (2000) Fluorescence decay and spectral evolution in intact Photosystem I of higher plants. Biochemistry 39: 6341–6348

    PubMed  CAS  Google Scholar 

  • Dainese P and Bassi R (1991) Subunit stoichiometry of the chloroplast Photosystem II antenna system and aggregation state of the component chlorophyll-a/b binding proteins. J Biol Chem 266: 8136–8142

    PubMed  CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60: 1–23

    CAS  Google Scholar 

  • Dau H (1996) On the relation between absorption and fluorescence emission spectra of photosystems: Derivation of a Stepanov relation for pigment clusters. Photosynth Res 48: 139–145

    CAS  Google Scholar 

  • Dau H and Sauer K (1996) Exciton equilibration and Photosystem II exciton dynamics—a fluorescence study on Photosystem II membrane particles of spinach. Biochim Biophys Acta 1273: 175–190

    Google Scholar 

  • Den Hollander WTF, Bakker JGC, and van Grondelle R (1983) Trapping, loss and annihilation of excitations in a photosynthetic system. I. Theoretical aspects. Biochim Biophys Acta 725: 492–507

    Google Scholar 

  • Douce R and Joyard J (1990) Biochemistry and function of the plastide envelope. Annu Rev Cell Biol 6: 173–216

    PubMed  CAS  Google Scholar 

  • Duysens LNM (1956) The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim Biophys Acta 19: 1–12

    PubMed  CAS  Google Scholar 

  • Emerson R and Arnold W (1932a) The photochemical reaction center in photosynthesis. J Gen Physiol 16: 191–205

    PubMed  CAS  Google Scholar 

  • Emerson R and Arnold W (1932b) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    PubMed  CAS  Google Scholar 

  • Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococcus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595

    PubMed  CAS  Google Scholar 

  • Emerson R and Lewis CM (1943) The dependence of quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178

    CAS  Google Scholar 

  • Fell DA (1992) Metabolic control analysis: A survey of its theoretical and experimental development. Biochem J 286: 313–330

    PubMed  CAS  Google Scholar 

  • Fork DC and Amesz J (1969) Action spectra and energy transfer in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 20: 305–328

    CAS  Google Scholar 

  • Fork DC and Mohanty PS (1986) Fluorescence and other characteristics of blue-green algae (Cyanobacteria), red algae, and cryptomonads. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 451-496. Academic Press, Inc., Orlando

    Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 2: 55–75

    Google Scholar 

  • Fromme P, Witt HT, Schubert WD, Klukas O, Saenger W, and Krauss N (1996) Structure of Photosystem I at 4.5 Å resolution: A short review including evolutionary aspects. Biochim Biophys Acta 1275: 76–83

    Google Scholar 

  • Fujita Y, Murakami A, Aizawa K and Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: Homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 677-692. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Füglistaller P, Mimuro M, Suter F, and Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide LC 8,9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe-Seyler 368: 353–367

    PubMed  Google Scholar 

  • Garczarek L, van der Staay GWM, Thomas JC, and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131–141

    CAS  Google Scholar 

  • Gasanov R, Abilov ZK, Gazanchyan RM, Kurbonova UM, Khanna R, and Govindjee (1979) Excitation energy transfer in Photosystems I and II from grana and in Photosystem I from stroma lamellae, and identification of emission bands with pigment-protein complexes. Z Pfianzenphysiol 95: 148–169

    Google Scholar 

  • Gill EM and Wittmershaus BP (1999) Spectral resolution of lowenergy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 through direct excitation. Photosynth Res 61: 53–64

    CAS  Google Scholar 

  • Glazer AN, Chan C, Williams RC, Yeh SW, and Clark JH (1985) Kinetics of energy flow in the phycobilisome core. Science 230: 1051–1053

    PubMed  CAS  Google Scholar 

  • Goedheer JC (1965) Fluorescence action spectra of algae and bean leaves at room and liquid nitrogen temperatures. Biochim Biophys Acta 102: 73–89

    PubMed  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky. Chlorophyll a fluorescence. Austr J Plant Physiol 22: 131–160

    CAS  Google Scholar 

  • Govindjee (1999) Carotenoids in photosynthesis: An historical perspective. In: Frank H, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 1-19. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Govindjee and Satoh K (1986) Fluorescence properties of chlorophyll b-and chlorophyll c-containing algae. In: Govindjee, Amesz J, and Fork DC (eds) Light emission by plants and bacteria, pp 497-537. Academic Press, Inc., Orlando

    Google Scholar 

  • Grabowski J and Gantt E (1978) Photophysical properties of phycobiliproteins from phycobilisomes: Fluorescence lifetimes, quantum yields, and polarization spectra. Photochem Photobiol 28: 39–45

    CAS  Google Scholar 

  • Gradinaru CC, Pascal AA, van Mourik F, Robert B, Horton P, van Grondelle R, and van Amerongen H (1998) Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pumpprobe spectroscopy. Biochemistry 37: 1143–1149

    PubMed  CAS  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    PubMed  CAS  Google Scholar 

  • Grossman AR, Manodori A, and Snyder D (1990) Lightharvesting proteins of diatoms. Their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet 224: 91–100

    PubMed  CAS  Google Scholar 

  • Haidak DJ, Mathews CK, and Sweeneby BM (1966) Pigment protein complex from Gonyaulax. Science 152: 212–213

    PubMed  CAS  Google Scholar 

  • Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral favia. Biol Bull 134: 411–424

    CAS  Google Scholar 

  • Hankamer B, Barber J, and Boekema EJ (1997) Structure and membrane organization of Photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641–671

    PubMed  CAS  Google Scholar 

  • Hastings G, Kleinherenbrink FAM, Lin S, and Blankenship RE (1994) Time-resolved fluorescence and absorption spectroscopy of Photosystem I. Biochemistry 33: 3185–3192

    PubMed  CAS  Google Scholar 

  • Hastings G, Hoshina S, Webber AN, and Blankenship RE (1995) Universality of energy and electron transfer processes in Photosystem I. Biochemistry 34: 15512–15522

    PubMed  CAS  Google Scholar 

  • Hecks B, Breton J, Leibl W, Wulf K, and Trissl H-W (1994) Primary charge separation in Photosystem I: A picosecond two-step electrogenic charge separation connected with P700+A0-and P700+A1-formation. Biochemistry 33: 8619–8624

    PubMed  CAS  Google Scholar 

  • Hecks B, Wilhelm C, and Trissl H-W (1996) Functional organization of the photosynthetic apparatus of the primitive alga Mantoniella squamata. Biochim Biophys Acta 1274: 21–30

    Google Scholar 

  • Heinrich R and Schuster S (1996) The Regulation of Cellular Systems. Chapman and Hall, New York

    Google Scholar 

  • Hiller RG (1999) Carotenoids as components of the lightharvesting proteins of eukaryotic algae. In: Amesz J and Hoff AJ (eds) The Photochemistry of Carotenoids, pp 81-98. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Hoff AJ and Amesz J (1991) Visible absorption spectroscopy of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 723-738. CRC Press, Boca Raton

    Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Weite W, and Diederichs K (1996) Structural basis of light harvesting by carotenoids-peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    PubMed  CAS  Google Scholar 

  • Holzwarth AR (1986) Fluorescence lifetimes in photosynthetic systems. Photochem Photobiol 43: 707–725

    CAS  Google Scholar 

  • Holzwarth AR (1991) Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol Plant 83: 518–528

    CAS  Google Scholar 

  • Holzwarth AR (1996) Data analysis of time-resolved measurements. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 75-92. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Holzwarth AR, Schatz G, Brock H, and Bittersmann E (1993) Energy transfer and charge separation kinetics in Photosystem I. 1. Picosecond transient absorption and fluorescence study of cyanobacterial Photosystem I particles. Biophys J 64: 1813–1826

    PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    PubMed  CAS  Google Scholar 

  • Internet (1999) The Metabolic Control Analysis Web. http:// gepasi.dbs.aber.ac.uk/

    Google Scholar 

  • Jahns P and Trissl H-W (1997) Indications for a dimeric organization of the antenna-depleted reaction center core of Photosystem II in thylakoids of intermittent light grown pea plants. Biochim Biophys Acta 1318: 1–5

    CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1–19

    PubMed  CAS  Google Scholar 

  • Jennings RC and Forti G (1975) Evidence for energy migration from Photosystem I to Photosystem II and the effect of magnesium. Biochim Biophys Acta 376: 89–96

    PubMed  CAS  Google Scholar 

  • Jennings RC, Bassi R and Zucchelli G (1996) Antenna structure and energy transfer in higher plant photosystems. In: Mattay J (ed) Topics in Current Chemistry, 177: Electron Transfer II, pp 147-181. Springer-Verlag, Heidelberg, Berlin

    Google Scholar 

  • Jennings RC, Zucchelli G, Croce R, Valkunas L, Finzi L and Garlaschi FM (1997) Model studies on the excited state equilibrium perturbation due to reaction centre trapping in Photosystem I. Photosynth Res 52: 245–253

    CAS  Google Scholar 

  • Joliot P (1965) Cinètiques des rèactions lièes a lømission doxygëne photosynthøtique. Biochim Biophys Acta 102: 116–134

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5Å resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Jursinic PA (1986) Delayed fluorescence: Current concepts and status. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 291-328. Academic Press, New York

    Google Scholar 

  • Karapetyan NV, Dorra D, Holzwarth AR, Kruip J and Rögner M (1998) Origin of the extreme longwave chlorophyll form of the Photosystem I trimeric complex of Spirulina. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 583-586. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kazachenko LP (1965) A consequence of the universal relationship between absorption and emission spectra of complex compounds. Opt Spectrosc (Engl transi) 18: 397–398

    Google Scholar 

  • Kennard EH (1918) On the thermodynamics of fluorescence. Phys Rev 11: 29–38

    CAS  Google Scholar 

  • Kleima FJ, Hofmann E, Gobets B, van Stokkum IHM, van Grondelle R and van Amerongen H (1998) Peridinin chlorophyll protein: Structure and dynamics related. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 441-444. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Knox RS and Gülen D (1993) Theory of polarized fluorescence from molecular pairs: Förster transfer at large electron coupling. Photochem Photobiol 57: 40–43

    CAS  Google Scholar 

  • Knox RS, Brown JS, Laible PD, and Talbot MFJ (1999) Part of the fluorescence of chlorophyll a may originate in excited triplet states. Photosynth Res 60: 165–177

    CAS  Google Scholar 

  • Koehne B and Trissl H-W (1998) The cyanobacterium Spirulina platensis contains a long wavelength absorbing pigment C735 (F760 77K) at room temperature. Biochemistry 37: 5494–5500

    PubMed  CAS  Google Scholar 

  • Koehne B, Elli G, Jennings RC, Wilhelm C, and Trissl H-W (1999) Spectroscopic and molecular characterization of a longwavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta 1412: 94–107

    PubMed  CAS  Google Scholar 

  • Krey A and Govindjee (1966) Fluorescence studies on a red alga, Porphyridium cruentum. Biochim Biophys Acta 120: 1–18

    PubMed  CAS  Google Scholar 

  • Kruip J, Bald D, Boekema EJ, and Rögner M (1994) Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res 40: 279–286

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN, and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    PubMed  Google Scholar 

  • Laible PD, Zipfel W, and Owens TG (1994) Excited state dynamics in chlorophyll-based antennae. The role of transfer equilibrium. Biophys J 66: 844–860

    PubMed  CAS  Google Scholar 

  • Larkum AWD and Barrett J (1983) Light-harvesting processes in algae. Adv Bot Res 10: 1–219

    CAS  Google Scholar 

  • Lavergne J and Trissl H-W (1995) Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 65: 2474–2492

    Google Scholar 

  • Lavorel J (1963) Indications d’ordre spectroscopique sur l’heterogeneite de la chlorophlle in vivo. In: Wurmser MR(ed) La Photosynthese. Colloque Internationaux du Centre National de la Recherche Scientifique, Vol 119, pp 161-176. CNRS, Paris

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoid: Pigments of photosynthetic biomembranes. Meth Enzymol 148: 350–382

    CAS  Google Scholar 

  • Lichtlé, C, Duval, JC and Lemoine, Y (1987) Comparative biochemical, functional and ultrastructural studies of photosystem particles from a cryprophyceae: Gryptomonas rufesces; isolation of an active phycoerythrin particle. Biochim. Biophys. Acta 894: 76–90

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, and Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227: 57–69

    PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomcs. J Struc Biol 124: 311–334

    CAS  Google Scholar 

  • MacColl R, Williams EC, Eisele LE, and McNaughton P (1994) Chromophore topography and exciton splitting in phycocyanin 645. Biochemistry 33: 6418–6423

    PubMed  CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: Functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 523-538. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H, and Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456: 27–34

    PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chichara M, and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402–402

    CAS  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterium. Biochim Biophys Acta 1100: 285–292

    CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ, and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421–424

    CAS  Google Scholar 

  • Myers J and Graham J-R (1963) Enhancement in Chlorella. Plant Physiol 38: 105–116

    PubMed  CAS  Google Scholar 

  • Naqvi KR, Melo TB, and Raju BB (1997) Assaying the chromophore composition of photosynthetic systems by spectral reconstruction:Application to the light-harvesting complex (LHC II) and the total pigment content of higher plants. Spectrochim Acta 53: 2229–2234

    Google Scholar 

  • Nechushtai R, Eden A, Cohen Y and Klein J (1996) Introduction to Photosystem I: Reaction center function, composition and structure. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 289-311. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ong LJ and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. J Biol Chem 266: 9515–9527

    PubMed  CAS  Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Photosynthesis and the Environment, pp 25-66. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Partensky F, Hess WR, and Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    CAS  Google Scholar 

  • Pichersky E and Jansson S (1996) The light-harvesting chlorophyll a/b-binding polypeptides and their genes in Angiosperm and Gymnosperm species. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 507-521. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant algae. In: Scheer H (ed) Chlorophylls, pp 31-57. CRC Press, Boca Raton

    Google Scholar 

  • Post AF, Ohad I, Warner KM, and Bullerjahn GS (1993) Energy distribution between Photosystem I and Photosystem II in the photosynthetic prokaryote Prochlorothrix hollandica involves a chlorophyll a/b antenna which associates with Photosystem I. Biochim Biophys Acta 1144: 374–384

    CAS  Google Scholar 

  • Renger G (1992) Energy transfer and trapping in Photosystem II. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology. Vol 11, pp 45-99. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Rijgersberg CP, Amesz J, Thielen APGM, and Swager JA (1979) Fluorescence emission spectra of chloroplasts and subchloroplast preparations at low temperature. Biochim Biophys Acta 545: 473–482

    PubMed  CAS  Google Scholar 

  • Robinson GW (1966) Excitation transfer and trapping in photosynthesis. In: Olson JMeal (ed) Energy Conversion by the Photosynthetic Apparatus, pp 16-48. Brookhaven Symposia in Biology, Upton, New York

    Google Scholar 

  • Roelofs TA, Lee C-H, and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in Photosystem II α-and β-units. Biophys J 61: 1147–1163

    PubMed  CAS  Google Scholar 

  • Sandona D, Croce R, Pagano A, Crimi M, and Bassi R (1998) Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365: 207–214

    PubMed  CAS  Google Scholar 

  • Sarcina M, Tobin MJ and Mullineaux CS (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 4942: Effects of phycobilisome size, temperature and membrane lipid composition. J Biol Chem 276: 46830–46834

    PubMed  CAS  Google Scholar 

  • Satoh K, Strasser RJ, and Butler WL (1976) A demonstration of energy transfer from Photosystem II to Photosystem I in chloroplasts. Biochim Biophys Acta 440: 337–345

    PubMed  Google Scholar 

  • Schatz GH, Brock H, and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    PubMed  CAS  Google Scholar 

  • Scheer H (1982) Phycobiliproteins: Molecular aspects of a photosynthetic antenna system. In: Fong FK (ed) Light Reaction Path of Photosynthesis, pp 7-45. Springer, Berlin

    Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S, and Dau H (1997) Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410: 433–436

    PubMed  CAS  Google Scholar 

  • Schmid VHR, Cammarata KV, Bruns BU, and Schmidt GW (1997) In vitro reconstitution of the Photosystem I lightharvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94: 7667–7672

    PubMed  CAS  Google Scholar 

  • Schmitt A, Herold A, Weite C, Wild A, and Wilhelm C (1993) The light-harvesting system of the unicellular alga Mantoniella squamata (Prasinophyceae). Evidence for the lack of a Photosystem I-specific antenna complex. Photochem Photobiol 57: 132–138

    CAS  Google Scholar 

  • Sétif P (1992) Energy transfer and trapping in Photosystem I. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 471-499. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139-216. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Simpson DJ and Knoetzel J (1996) Light-harvesting complexes ofplants and algae: Introduction, survey and nomenclature. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 493-506. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Song P-S, Koka P, Prøzelin BB, and Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinofiagellates. Biochemistry 15: 4422–4427

    PubMed  CAS  Google Scholar 

  • Stadnichuk IN, Karapetyan NV, Kislov LD, Semenenko VE, and Vcryasov MB (1997) Two gamma-polypeptides of Bphycoerythrin from Porphyridium cruentum. J Photochem Photobiol B 39: 19–23

    CAS  Google Scholar 

  • Staehelin LA and van der Staay GWM (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The light reactions, pp 11-30. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stepanov BI (1957) A universal relation between the absorption and luminescence spectra of complex molecules. Sov Phys Dokl 2: 81–84

    CAS  Google Scholar 

  • Sutcr GW and Holzwarth AR (1987) A kinetic model for the energy transfer in phycobilisomes. Biophys J 52: 673–683

    Google Scholar 

  • Szalay L, Rabinowitch E, Murty NR, and Govindjee (1967) Relationship between the absorption and emission spectra and the ‘red drop’ in the action spectra of fluorescence in vivo. Biophys J 7: 137–149

    PubMed  CAS  Google Scholar 

  • Tan S, Cunningham FX, and Gantt E (1997) Lhcarl of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol Biol 33: 157–167

    PubMed  CAS  Google Scholar 

  • Thomas JC and Passaquet C (1999) Characterization of a phycoerythrin without α-subunits from a unicellular red alga. J Biol Chem 274: 2472–2482

    PubMed  CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302: 17–45

    PubMed  Google Scholar 

  • Trissl H-W (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35: 247–263

    CAS  Google Scholar 

  • Trissl H-W (1996) Antenna organization in purple bacteria investigated by means of fluorescence induction curves. Photosynth Res 47: 175–185

    CAS  Google Scholar 

  • Trissl H-W (1997) Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+. Photosynth Res 54: 237–240

    CAS  Google Scholar 

  • Trissl H-W (1999) Theory of fluorescence induction, http:// www.biologie.uni-osnabrueck.de/biophys/trissl/Teaching/ teaching.htm

    Google Scholar 

  • Trissl H-W and Lavergne J (1995) Fluorescence induction from Photosystem II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between units. Austr J Plant Physiol 22: 183–193

    CAS  Google Scholar 

  • Trissl H-W and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18: 415–419

    PubMed  CAS  Google Scholar 

  • Trissl H-W, Law CJ, and Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412: 149–172

    PubMed  CAS  Google Scholar 

  • Valkunas L, Liuolia V, Dekker JP, and van Grondelle R (1995) Description of energy migration and trapping in Photosystem I by a model with two distance scaling parameters. Photosynth Res 43: 149–154

    CAS  Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    CAS  Google Scholar 

  • van Thor JJ, Mullineaux CW, Matthijs HCP, and Hellingwert KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111: 430–443

    Google Scholar 

  • Vishnevetsky M, Ovadis M, and Vainstein A (1999) Carotenoid sequestration in plants: The role of carotenoid-associated proteins. Trends Plant Sci 4: 232–235

    PubMed  Google Scholar 

  • Wang RT and Myers J (1977) Reverse energy transfer from chlorophyll to phycobilin in Anacystis nidulans. Plant Cell Physiol Special Issue: 3-7

    Google Scholar 

  • Westermann M and Wehrmeyer W (1995) A new type of complementary chromatic adaptation exemplified by Phormidium sp C86: Changes in the number of peripheral rods and in the stoichiometry of core complexes in phycobilisomes. Arch Microbiol 164: 132–141

    CAS  Google Scholar 

  • Wilhelm C (1990) The biochemistry and physiology of lightharvesting processes in chlorophyll b- and chlorophyll ccontaining algae. Plant Physiol Biochem 28: 293–306

    CAS  Google Scholar 

  • Wilhelm C (1993) Some critical remarks on the suitability of the concept of the photosynthetic unit in photosynthesis research and phytoplankton ecology. Bot Acta 106: 287–293

    CAS  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharpies F, Hiller RG, and Curmi PMG (1999) Evolution of a lightharvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc Natl Acad Sci USA 96: 8901–8906

    PubMed  CAS  Google Scholar 

  • Wulf K and Trissl H-W (1996) Competition between annihilation and trapping leads to strongly reduced yields of photochemistry under ps-flash excitation. Photosynth Res 48: 255–262

    CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: Localization and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539-563. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zankel KL and Clayton RK (1969) ‘Uphill’ energy transfer in a photosynthetic bacterium. Photochem Photobiol 9: 7–15

    PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trissl, HW. (2003). Modeling the Excitation Energy Capture in Thylakoid Membranes. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics