Skip to main content

Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

At least 95% of the organic carbon in cyanobacteria and algae has been fixed as CO2 by Rubisco. The kinetic properties of Rubisco are such that even the genetic variants with the highest CO2:O2 selectivity would show limited CO2 fixation and significant oxygenase activity if CO2 and O2 fluxes into cells are driven solely by diffusion. This is especially the case for submerged algae with low gas diffusion coefficients relative to diffusion boundary layer thicknesses. There is evidence from gas exchange properties and intracellular inorganic concentration that inorganic carbon concentrating mechanisms (CCMs) function in all cyanobacteria and many algae. CCMs can, in theory, operate through three categories of mechanism: the first mechanism is active transport of HCO-3 and/or CO2 across membranes, the second is CO2 pumping by a biochemical mechanism analogous to C4 and CAM (Crassulacean Acid Metabolism) pathways in higher land plants, and the third mechanism involves active transport of H+ producing an acid compartment supplied with HCO-3, which generates a high (equilibrium) CO2 concentration that supplies CO2 to Rubisco in a nearby more alkaline compartment. Most evidence favors the first mechanism as being responsible for CCM activity in algae. The CO2 (and HCO-3) permeability of membranes is crucial in defining the extent of inorganic C leakage from CCMs, and the functioning of diffusive CO2 supply to Rubisco from the medium. Like carbonic anhydrases, CCMs, are probably polyphyletic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand D, Furia P and Bénazet-Tambutté S (1998) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Bot 76: 925–941

    CAS  Google Scholar 

  • Amoroso G, Sültemeyer DF, Thyssen C and Fock HP (1998) Uptake of HCO-3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116: 193–201

    CAS  Google Scholar 

  • Ananyev GM, Zoltsman L, Vasko C and Dismukes GC (2001) The inorganic biochemistry of photosynthetic oxygen evolution/ water oxidation. Biochim Biophys Acta 1503: 52–68

    PubMed  CAS  Google Scholar 

  • Arancibia-Avila P, Coleman JR, Russin WA, Graham JM and Graham LE (2001) Carbonic anhydrase localization in charophycean green algae: Ecological and evolutionary significance. Int J Plant Sci 162: 127–135

    CAS  Google Scholar 

  • Axelsson L, Larsson C and Ryberg H (1999) Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ 22: 969–978

    CAS  Google Scholar 

  • Badger MR and Gallagher A (1987) Adaptation of photosynthetic CO2 and HCO-3 accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations. Austr J Plant Physiol 14: 189–201

    CAS  Google Scholar 

  • Badger MR and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. J exp. Bot 54: 609–622

    CAS  Google Scholar 

  • Badger MR and Spalding MH (2000) CO2 acquisition, concentration and fixation in cyanobacteria and algae. In: Leegood RC, Sharkey TD and von Caemraerer S (eds) Photosynthesis: Physiology and Mechanisms, pp 369-397. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W and Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids and chloroplastbased CO2-concentrating mechanisms in the algae. Can J Bot 76: 1052–1071

    CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S and Nakaro H (2000) Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase. Phil Trans Roy Soc Lond B 355: 1433–1446

    CAS  Google Scholar 

  • Badger MR, Hanson D and Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29: 161–173

    CAS  Google Scholar 

  • Baier M, Gimmler H and Hartung W (1990) The permeability of the guard cell plasma membrane and tonoplast. J exp Bot 41: 351–358

    CAS  Google Scholar 

  • Ball LA, Maberly SC and Raven JA (2000) The importance of CO2 in the spatial and temporal distribution of chry sophytes in lakes. The Phycologist 55: 21

    Google Scholar 

  • Beardall J (1991) Effects of photon flux density on the ‘CO2concentrating’ mechanism of the cyanobacterium Anabaena variabilis. J Plankt Res 13 (supplement): 133-141

    Google Scholar 

  • Beardall J and Giordano M (2002) Ecological implications of microalgal and cyanobacterial CCMs and their regulation. Functional Plant Biology 29: 335–347

    CAS  Google Scholar 

  • Beardall J, Johnston AM and Raven JA (1998) Environmental regulation of the CO2 concentrating mechanism in microalgae. Can J Bot 76: 1010–1017

    CAS  Google Scholar 

  • Beavis AD and Vevesci AE (1992) Anion uniport in plant mitochondria is mediated by a Mg2+-insensitive inner membrane anion channel. J Biol Chem 267: 3079–3087

    PubMed  CAS  Google Scholar 

  • Berecki G, Vanga Z, van Iren F and van Duijn B (1999) Anion channels in Chora corallina tonoplast membrane: Calcium dependence and rectification. J Membrane Biol 172: 159–168

    CAS  Google Scholar 

  • Berman-Frank I, Kaplan A, Zohary T. and Dubinsky Z (1995) Carbonic anhydrase activity in the bloom-forming dinoflagellate Peridinium gatunense J Phycol.31: 906-913.

    Google Scholar 

  • Berner RA and Kothavala Z (2001) GEOCARBIII: A revised model of atmospheric CO2 over phanerozoic time. Amer J Sci 301: 182–204.

    CAS  Google Scholar 

  • Bozzo GG, Colman B and Matsuda Y (2000) Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri. J Exp Bot 51: 1341–1348

    PubMed  CAS  Google Scholar 

  • Burkhardt S, Riebeseil U and Zonderra I (1999) Stable carbon isotope fractionation by marine phytoplankton in response to daylength growth rate and CO2 availability. Mar Ecol Progr Ser 184: 31–41

    Google Scholar 

  • Busch S and Schmidt R (2001) Enzymes associated with the βcarboxylation pathway in Ectocarpus siliculosus (Phaeophyceae): Are they involved in net carbon acquisition? Eur J Phycol 36: 61–70

    Google Scholar 

  • Cavalier-Smith, T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5: 174–182.

    PubMed  CAS  Google Scholar 

  • Chen Y, Cunn MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR and Buck J (2000) Soluble adenyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289: 635–628

    Google Scholar 

  • Duarte CM and Agusti S (1998) The CO2 balance of unproductive aquatic communities. Science 281: 234–236

    PubMed  CAS  Google Scholar 

  • Eriksson H, Karlsson J, Ramazanov Z, Gardestrom P and Samuelsson G (1996) Discovery of an algal carbonic anhydrase: Molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 93: 2031–2043

    Google Scholar 

  • Falkowski PG and Raven JA (1997) Aquatic Photosynthesis. Blackwell Science, Maiden

    Google Scholar 

  • Furia P, Bénazet-Tambatté S and Allemand D (1998) Functional polarity of the tentacle of the sea anemone Ammonia viridis: Role in inorganic carbon acquisition. Am J Physiol 274: R303-R310

    Google Scholar 

  • Gimmler H, Weiss C, Baier M and Hartung W (1990) The conductance of the plasmalemma for CO2. J exp Bot 41: 785–794

    CAS  Google Scholar 

  • Henzler T and Steudel E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggests transport of H2O2 across water channels. J exp Bot 51: 2053–2066

    PubMed  CAS  Google Scholar 

  • Hillrichs S and Schmid R (2001) Activation by blue light of inorganic carbon acquisition for photosynthesis in Ectocarpus siliculosus: Organic acid pools and short-term carbon fixation. Eur JPhycol 36: 71–79

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP and Schragg DP (1998) A Neoproterozoic snowball Earth. Science 281: 1342–1346

    PubMed  CAS  Google Scholar 

  • Johnston AM (1991) The acquisition of inorganic carbon by marine macroalgae. Can J Bot 69: 1123–1132

    CAS  Google Scholar 

  • Johnston AM, Maberly SC and Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92: 317–326

    Google Scholar 

  • Johnston AM, Raven JA, Beardall J and Leegood RL (2001) C4 photosynthesis in a marine diatom? Nature 412: 40–41

    PubMed  CAS  Google Scholar 

  • Kaplan A and Reinhold L (1999) CO2 concentrating mechanism in photosynthetic microorganisms. A Rev Plant Physiol Plant Mol Biol 50: 539–559

    CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV and Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBOJ 17: 1208–1216

    CAS  Google Scholar 

  • Kawamitsu Y and Boyer JS (1999) Photosynthesis and carbon storage between tides in a brown alga Fucus vesiculosus. Mar Biol 133: 361–369

    Google Scholar 

  • Keeley JE (1996) Aquatic photosynthesis. In: Winter K and Smith J AC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 281-295. Springer Verlag, Berlin

    Google Scholar 

  • Keller K and Morel FF (1999) A model of carbon isotopic fractionation and active carbon uptake in phytoplankton. Mar Ecol Progr Ser 182: 295–298

    CAS  Google Scholar 

  • Klughammer B, Sültemeyer D, Badger MR and Price GD (1999) The involvement ofNAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechoccus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Molec Microbiol 32: 1305–1315

    CAS  Google Scholar 

  • Kübier J and Raven JA (1995) Interactions between carbon supply and light supply in Palmaria palmata (Rhodophyta). J Phycol 31: 369–375

    Google Scholar 

  • Lane TW and Morel FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobalt and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123: 345–352

    PubMed  CAS  Google Scholar 

  • Lee RE and Kugrens PA (1998) Hypothesis: The ecological advantage of chloroplast ER—The ability to outcompete at low dissolved CO2 concentrations. Protist 149: 341–345

    Google Scholar 

  • Lee RE and Kugrens P (2000) Ancient atmospheric CO2 and the timing of evolution of secondary endosymbioses. Phycologia 39: 167–172

    Google Scholar 

  • Leggat W, Badger MR and Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121: 1247–1255

    PubMed  CAS  Google Scholar 

  • Ludwig M, S ültemeyer D and Price GD (2000) Isolation of ccmKLMN genes from the marine cyanobacterium Synechococcus sp. PCC7002 (cyanobacteria), and evidence that ccmM is essential for carboxysome assembly. J Phycol 36: 1109–1118

    CAS  Google Scholar 

  • MacFarlane JJ and Raven JA (1990) C, N and P nutrition of Lemanea mammilosa Kiitz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, Scotland. Plant Cell Environ 13: 1–13

    CAS  Google Scholar 

  • Maberly SC, Raven JA and Johnston AM (1992) Discrimination between 12C and 13C by marine plants. Oecologia 91: 481–492

    Google Scholar 

  • Majeau N, Arnoldo M and Coleman JR (1994) Modification of carbonic anhydrase activity by antisense and overexpression constructs in transgenic tobacco. Plant Mol Biol 25: 377–385

    PubMed  CAS  Google Scholar 

  • Matsuda Y. and Colman B (1995) Induction of CO2 and bicarbonate transport in the green alga Chlorella ellipsoidea. II. Evidence for induction in response to external CO2 concentration. Plant Physiol. 108: 253–60

    Google Scholar 

  • Mayo WP, Williams TG, Birch DG and Turpin DH (1986) Photosynthetic adaptation by Synechococcus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiol 80: 1038–1040

    PubMed  CAS  Google Scholar 

  • Miller AG, Turpin DH and Canvin DT (1984) Growth and photosynthesis of the cyanobacterium Synechococcus leopoliensis in HCO-3-limited chemostats. Plant Physiol. 75: 1064–1070

    Google Scholar 

  • Morita E, Abe T, Tsuzuki M, Fujiwana S, Sato N, Hivata A, Sonioko K and Nozaki H (1998) Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less freeliving algal genus Chloromonas (Volvocales, Chlorophyta). Planta 204: 269–276

    PubMed  CAS  Google Scholar 

  • Morita E, Abe T, Tsuzuki M, Fujiwana S, Sato N, Hivata A, Sonioko K and Nozaki H (2000) Role of pyrenoids in the CO2concentrating mechanism: comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas. Planta 208: 365–372

    Google Scholar 

  • Moroney JV and Chen ZY (1998) The role of the chloroplast in inorganic carbon uptake by eukaryotic algae. Can J Bot 76: 1025–1034

    CAS  Google Scholar 

  • Moroney JV, Bartlett SG and Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24: 141–153

    CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A and Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407: 599–605

    PubMed  CAS  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF and Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 43: C543-C548

    Google Scholar 

  • Ogawa T and Ogren WL (1985) Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochem Photobiol 41: 583–587

    CAS  Google Scholar 

  • Ogawa T, Miyano A and Inoue Y (1985) Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochim. Biophys. Acta 808: 74–75

    Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S and Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. Strain. Proc Natl Acad Sci USA 96: 13571–13756

    PubMed  CAS  Google Scholar 

  • Palmqvist K (2000) Carbon economy in lichens. New Phytol 148: 11–36

    CAS  Google Scholar 

  • Palmqvist K, Sundblad, L-G, Wingsle G and Samuelsson G (1990) Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinhardtii. Plant Physiol 94: 357–366

    PubMed  CAS  Google Scholar 

  • Prasad GVR, Coury LA, Finn F and Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273: 33123–33126

    PubMed  CAS  Google Scholar 

  • Price GD, von Caemmerer S, Evans, JR, Yu J-W, Oja V, Kell P, Harrison K, Gallagher A and Badger MR (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA activity in transgenic tobacco plants has minor effects on photosynthetic CO2 assimilation. Planta 193: 331–340

    CAS  Google Scholar 

  • Pronina NA and Semenenko VE (1992) Role of the pyrenoid in concentration, generation and fixation of CO2 in the chloroplast of microalgae. Sov Plant Physiol 39: 470–476

    Google Scholar 

  • Rands ML, Loughman BC and Douglas AE (1993) The symbiotic interface in an alga invertebrate symbiosis. Phil Trans R Soc LondB. 253: 161–165.

    Google Scholar 

  • Raven JA (1984) Energetics and Transport in Aquatic Plants. AR Liss, New York

    Google Scholar 

  • Raven JA (1994) Photosynthesis in aquatic plants. In: Schulze E-D and Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 299-318 Springer Verlag, Berlin

    Google Scholar 

  • Raven JA (1995) Costs and benefits of low intracellular osmolarity in cells of freshwater algae. Funct Ecol 9: 701–707

    Google Scholar 

  • Raven JA (1997a) CO2 concentrating mechanisms: A role for thylakoid lumen acidification? Plant Cell Environ 20: 147–154

    CAS  Google Scholar 

  • Raven JA (1997b) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27: 85–209

    CAS  Google Scholar 

  • Raven JA (1997c) Putting the C in Phycology. Eur J Phycol 32: 319–333

    Google Scholar 

  • Raven JA (1999) Photosynthesis by red algae on mangrove roots: Algae get an airing. J Phycol 35: 1102–1105

    Google Scholar 

  • Raven JA (2000) Land plant biochemistry. Phil Trans Roy Soc Lond B 355: 833–845

    CAS  Google Scholar 

  • Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ 24: 261–265

    CAS  Google Scholar 

  • Raven JA and Beardall J (1981) Carbon dioxide as the exogenous inorganic carbon source for Batrachospermum and Lemanea. Br Phycol J 16: 165–175

    Google Scholar 

  • Raven JA and Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant Cell Environ 22: 741–755

    CAS  Google Scholar 

  • Raven JA and Johnston AM (1991) Mechanisms of inorganiccarbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol Oceanogr. 36: 1701–1714

    Google Scholar 

  • Raven JA, Beardall J and Griffiths H (1982) Inorganic C sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 53: 68–78

    Google Scholar 

  • Raven JA, Johnston AM, Newman JR and Scrimgeour CM (1994) Inorganic carbon acquisition by aquatic photolithotrophs of the Dighty Burn, Angus, UK: Uses and limitations of natural abundance of stable isotopes. New Phytol 127: 271–286

    CAS  Google Scholar 

  • Raven JA, Kübier JE and Beardall J (2000a) Put out the light and then put out the light. J Mar Biol Assoc UK 80: 1–25

    CAS  Google Scholar 

  • Raven JA, Johnston AM, Saville PJ and Meinroy SG (2000b) Carbon isotope ratios of photolithotrophs from Alt meall nan Damh, a burn at Ardeonaig, Perthshire, and their ecophysiological significance. Bot J Scotl 52: 1–15

    Google Scholar 

  • Raven JA, Johnston AM, Kübier JE, Korb R, Meinroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S and Dunton KH (2002a) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and Seagrasses. Funct Plant Biol 29: 355–378

    CAS  Google Scholar 

  • Raven JA, Johnston AM, Kübier JE, Korb R, Meinroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Clayton MN, Vanderklift M, Fredriksen S and Dunton KH (2002b) Seaweeds in cold seas: Evolution and carbon acquisition. Ann Bot 90: 525–536

    PubMed  CAS  Google Scholar 

  • Reinfelder JR, Kraepiel AML and Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407: 996–999

    PubMed  CAS  Google Scholar 

  • Reiskind JB and Bowes G (1991) The role of phosphoenol pyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Nat Acad Sci USA 88: 2883–2887

    PubMed  CAS  Google Scholar 

  • Reiskind JB, Seaman PT and Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87: 686–692

    PubMed  CAS  Google Scholar 

  • Ritchie RJ, Nadolny C and Larkum AWD (1996) Driving forces for bicarbonate transport in the cyanobacterium Synechococcus R-Z (PCC 7942). Plant Physiol 112: 1573–1584

    PubMed  CAS  Google Scholar 

  • Rumpho ME, Summer EJ and Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbioses. Plant Physiol 123: 29–38

    PubMed  CAS  Google Scholar 

  • Sanders D (1990) Kinetic modelling of plant and fungal membrane transport systems. Ann Rev Plant Physiol Plant Mol Biol 41: 77–107

    CAS  Google Scholar 

  • Saxby-Rouen KJ, Leadbeater BSC and Reynolds CS (1997) The growth response of Synura petersenii (Synurophyceae) to photon flux density, temperature and pH. Phycologia 36: 233–243

    Google Scholar 

  • Saxby-Rouen KJ, Leadbeater BSC and Reynolds CS (1998) The relationship between the growth of Synura petersenii (Synurophyceae) and components of the dissolved inorganic carbon system. Phycologia 37: 467–477

    Google Scholar 

  • Shiraiwa Y and Miyachi S (1985) Effects of temperature and CO2 concentration on induction of carbonic anhydrase and changes in efficiency of photosynthesis in Chlorella vulgaris 11 h. Plant Cell Physiol. 26: 543–549

    Google Scholar 

  • Sherlock DJ and Raven JA (2001) Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red algae. Bot J Scotl 53: 33–43

    Google Scholar 

  • Smith KS and Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Revs 24: 335–366

    CAS  Google Scholar 

  • Spalding, MH, Critchley, C, Govindjee and Ogren, WL (1984) Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynth Res 5: 169–176

    CAS  Google Scholar 

  • Sültemeyer D (1998) Carbonic anhydrase in eukaryotic algae: Characterization, regulation and possible functions during photosynthesis. Can J Bot 76: 962–972

    Google Scholar 

  • Sültemeyer D and Rinast K-A (1996) The CO2 permeability of the plasma membrane of Chlamydomonas reinhardtii: Massspectrometric 18O exchange measurements from 13C18O2 in suspension of carbonic anhydrase-loaded plasmamembrane vesicles. Planta 200: 358–368

    Google Scholar 

  • Sun XC, Allen KT, Stamer WD and Bonanno JA (2001) Effect of AQP1 expression level on CO2 permeability in bovine corneal endothelium. Investigative Ophthalmology and Visual Science 42: 417–423.

    PubMed  CAS  Google Scholar 

  • Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45: 744–750

    CAS  Google Scholar 

  • Tortell PD, Reinfelder JR and Morel FMM (1997) Active uptake of bicarbonate by diatoms. Nature 390: 243–244

    CAS  Google Scholar 

  • Tortell PD, Rau GD and Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45: 1485–1500

    CAS  Google Scholar 

  • Van K and Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cahl) mutant in Chlamydomonas reinhardtii. Plant Physiol 120: 757–764

    Google Scholar 

  • van den Hoek C, Mann DG and Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • van Hunnik E, Livne A, Pogenberg V, Spijkerman E, van den Ende H, Garcia Mendoza E, Sültemeyer D and de Leeuw JW (2001) Identification and localization of a thylakoid-band carbonic anhydrase from the green algae Tetraedron minimum (Chlorophyta) and Chlamydomonas noctigama (Chlorophyta). Planta 212: 454–459

    PubMed  Google Scholar 

  • Villarejo A, Martinez F, Plumed MD and Ramazanov N (1996) The induction of the CO2 concentrating mechanism in a starchless mutant in Chlamydomonas reinhardtii. Physiol Plant 98: 798–802

    CAS  Google Scholar 

  • Villarejo A, Rolland N, Martinez F and Sültemeyer DF (2001) A new chloroplast envelope carbonic anhydrase activity is induced during acclimation to low inorganic carbon concentrations in Chlamydomonas reinhardtii. Planta 213: 286–295

    PubMed  CAS  Google Scholar 

  • Vis ML and Entwisle TJ (2000) Insights into the phylogeny of the Batrachospermales (Rhodophyta) with rbel sequence data of Australian taxa. J Phycol 36: 1175–1182

    CAS  Google Scholar 

  • Walker NA, Smith FA and Cathers IR (1980) Bicarbonate assimilation by freshwater charophytes and higher plants. I. Membrane transport of bicarbonate is not proven. J Membr Biol 57: 51–58

    CAS  Google Scholar 

  • Weis UM and Reynolds WS (1999) Carbonic anhydrase expression and synthesis in the sea anemone Arthropleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Biochem Zool 72: 307–316

    CAS  Google Scholar 

  • Williams DM, Kasting JF and Frakes LA (1998) Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396: 453–455

    PubMed  CAS  Google Scholar 

  • Williams TG, Flanagan LB and Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2 and C 18O 16O in tobacco plants modified by an antisense construct to have a low chloroplastic carbonic anhydrase. Plant Physiol 112: 319–326

    PubMed  CAS  Google Scholar 

  • Wittpoth C, Krauth PG, Weymouth K, Kowalik KV and Strottman H (1998) Functional characterization of isolated plastids from two marine diatoms. Planta 206: 79–85

    CAS  Google Scholar 

  • Young E, Beardall J and Giordano M (2001) Inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) involves external carbonic anhydrase and direct HCO-3 utilization insensitive to the anion exchange inhibitor DIDS. Eur J Phycol 36: 81–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A Raven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raven, J.A., Beardall, J. (2003). Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics