Skip to main content

The Algae and their General Characteristics

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

In contrast to the land plants, algae have very diverse mechanisms of photosynthesis, and especially of light- harvesting pigments and assemblages. This diversity is inherited from a great diversity of plastid types with different evolutionary histories, not withstanding the fact that all plastids appear to be derived by endosymbiosis from Cyanobacteria or their forebears. The major groups of algae are therefore related to the type of protist host and the type of plastid, and these are described. In most groups of algae it appears that the plastid has been derived by at least two serial endosymbioses. A single endosymbiosis appears to have occurred in the green algae, the red algae and the glaucocystophytes. The rich variety of types and mechanisms has given rise to many biochemical products which today form the basis of a growing biotechnology industry. Algae are important economically in many other ways. From a photosynthetic point of view the algae will be a rich source of ideas for many years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akatsuka I (1994) Biology of Economic Algae. SPB Academic Publishing, The Hague

    Google Scholar 

  • Bhattacharya D (1997) An introduction to algal phylogeny and phylogenetic methods. Plant Syst Evol Suppl 11: 1–11

    Article  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J Biotechnol 70: 313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA and Borowitzka LJ (1988) Micro-Algal Biotechnology. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Cavalier-Smith T (1982) The origins of plastids. Biol J Linncan Soc 17: 289–306

    Article  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Christensen T (1989) The Chromophyta, past and present. In: Green JC, Leadbetter BSC and Diver WL (eds) The Chromophyte Algae: Problems and Perspectives, Vol 38, pp 1–12. The Systematics Association, Clarendon Press, Oxford

    Google Scholar 

  • Cohen, Z (1999) Chemicals from Microalgae. Taylor and Francis, London

    Google Scholar 

  • Daughberg N and Anderson RA (1997) A molecular phylogeny of the heterokont algae based on analysis of chloroplastencoded rbcL sequence data. J Phycol 33: 1031–1041

    Article  Google Scholar 

  • Douglas SE (1998) Plastid evolution: Origins, diversity, trends. Curr Opin Genet Dev 8: 655–661

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF and Gray MW (1991) Cryptomonad algae are evolutionary chimeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151

    Article  PubMed  CAS  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T and Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Engelmann W (1883) Farbe und Assimilation. Bot Zeit 41: 1–29

    Google Scholar 

  • Falkowski PG and Raven JA (1997) Aquatic Photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Gaidukov NI (1903) Die Farberveränderung bei den Prozessen der komplementären chromatischen Adaptation. Ber Dt Bot Ges 21: 517–539

    CAS  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Article  Google Scholar 

  • Graham LE (1996) Green algae to land plants: An evolutionary transition. J Plant Res 109: 241–251

    Article  Google Scholar 

  • Graham LE and Wilcox LW (2000) The Algae. Prentice Hall, New York

    Google Scholar 

  • Green JC and Leadbetter BSC (1994) The Haptophyte Algae. The Systematics Association, Vol 51. Clarendon Press, Oxford

    Google Scholar 

  • Greenwood AD (1974) The Cryptophyta in relation to phylogeny and photosynthesis. 8th International Congress of Electron Microscopy, Canberra, pp 566–567

    Google Scholar 

  • Gupta RS and Golding GB (1996) The origin of the eukaryotic cell. Trends Bioch Sci 21: 166–171

    CAS  Google Scholar 

  • Kristiansen J (1990) Chrysophyta. In: Margulis L, Corliss JO, Melkonian M and Chapman DJ (eds) Handbook of Protoctista, pp 438–454. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV(1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR and Hill DRA (1994a) Goniomonas: rRNA sequences indicate that this phagotropohic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29: 29–32

    Article  Google Scholar 

  • McFadden GI, Gilson PR, Hofman CJB, Adcock GJ and Maier UG (1994b) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91: 3690–3694

    Article  PubMed  CAS  Google Scholar 

  • Moriera D, LeGuyader H and Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405: 69–72

    Article  Google Scholar 

  • Ohno M and Critchley AT (1993) Seaweed cultivation and marine ranching. Yokosuka Publishing: Kanagawa International Fisheries Training Center, Japan International Cooperation Agency, Tokyo

    Google Scholar 

  • Patterson DJ (1989) Stramenopiles: Chromophytes from a protistan perspective. In: Green JC, Leadbetter BSC and Diver WL (Eds)The Chromophyte Algae: Problems and Perspectives, Vol 38, pp 357–379. The Systematics Association, Clarendon Press, Oxford

    Google Scholar 

  • Ragan MA, Bird CJ, Rice EL, Gutell RR, Murphy CA and Singh RK (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci USA 91: 7276–7280

    Article  PubMed  CAS  Google Scholar 

  • Reith M (1995) Molecular biology of rhodophyte and chromophyte plastids. Annu Rev Plant Physiol Mol Biol 46: 540–575

    Article  Google Scholar 

  • Round FE, Crawford RM and Mann DG (1990) The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor FJR (1987) The Biology of Dinoflagellates. Blackwell Science Publishers, Oxford

    Google Scholar 

  • van de Peer Y, Rensing SA., Maier U-G, and de Wachter R (1996). Substitution rate calibration of small subunit ribosomal RNA identified chlorarachniophyte endosymbiont as remnants of green algae. Proc Natl Acad Sci USA 93: 7732–7736

    Article  PubMed  Google Scholar 

  • van den Hoek C, Mann DG and Jahns HM (1995) The Algae: An Introduction to their Phylogeny. Cambridge University Press, Cambridge

    Google Scholar 

  • Winter A and Siesser WG (1994) Coccolithophores. Cambridge University Press, Cambridge

    Google Scholar 

  • Xiao S, Zhang Y and Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in Neoproterozoic phosphorite. Nature 191: 553–558

    Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Douglas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douglas, S.E., Raven, J.A., Larkum, A.W.D. (2003). The Algae and their General Characteristics. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics