Skip to main content

Abstract

In the design of new functional materials, molecular systems have high advantageous characters. Since the molecule tends to keep its nature even in the assembled state, it seems not so difficult to design the bi-functional systems by combining the molecular building blocks with different characters. A good example may be the magnetic organic conductors composed of organic π donors and magnetic anions. The ability to design a molecule in molecular systems is another advantageous feature. The nature of frontier molecular orbitals, dominating most of the electronic properties of molecular materials, can be controlled to some extent by suitable design of the molecule, which makes, in principle, the rational design of the functional molecular materials. The development of single-component molecular metal may be a good example showing the validity of “frontier orbital design”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jérome, D., Mazaud, A., Ribault, M, and Bechgaard, K. (1980) Superconductivity in a synthetic organic conductor (TMTSF)2PF6, J. Phys. Lett. 41, L95–L98.

    Article  Google Scholar 

  2. Tamura, M., Nakazawa, Y., Shiomi, D., Nozawa, K., Hosokoshi, Y., Ishikawa, M., Takahashi, M., and Kinoshita, M. (1991) Bulk ferromagnetism in the β-phase crystal of the ρ-nitrophenylnitronylnitroxide radical Chem. Phys. Lett. 186, 401–404.

    Article  CAS  Google Scholar 

  3. Akamatu, H., Inokuchi, H., and Matsunaga, Y. (1954) Electron conductivity of the perylene-bromine complex, Nature 173, 168–169.

    Article  Google Scholar 

  4. Keller, H. J. (1977) Chemistry and physics of one-dimensional metal, NATIO ASI Series B, volume 25.

    Google Scholar 

  5. For example, Barclay, T. M., Cordes, A. W., deLaat, R. H., Goddard, J. D., Haddon, R. C., Jeter, D. Y., Mawhinney, R. C., Oakley, R. T., Palstra, T. T. M., Patenaude, G. W., Reed, R. W., and Westwood, N. P. C. (1997) The heterocyclic diradical benzo-l,2:4,5-bis(l,3,2-dithiazolyl). Electronic, molecular and solid state structure, J. Am. Chem. Soc. 119, 2633–2641.

    Article  CAS  Google Scholar 

  6. Recently, Haddon et al. have reported the observation of high electrical conductivity (≈ 0.15 Scm-1) of pur organic solid (Itkis,M. E., Chi, X., Cordes, A. W., and Haddon, R. C. (2002) Magneto-opto-electronic bistability in a phenalenyl-based neutral radical Sience 296, 1443–1445. ).

    Article  Google Scholar 

  7. (a) LeNarvor, N., Robertson, N., Weyland, T., Killburn, J. D., Underhill, A. E., Webster, M., Svenstrup, N., and Becker, J. (1996) Synthesis, structure and properties of nickel complexes of ,5-tetrathiafulvalene dithiolates: High conductivity in neutral dithiolate complexes, J. Chem. Soc., Chem. Commun. 1363–1364.

    Google Scholar 

  8. (b) LeNarvor, N., Robertson, N., Wallace, E., Kilburn, J. D., Underhill, A. E., Bartlett, P. N., and Webster, M. (1996) Metal complexes of a tetrathiafulvalene 4,5-dithiolate. Synthesis, characterization and properties of dianionic and neutral mercury complexes, .J. Chem. Soc, Dalton Trans. 1363–1364.

    Google Scholar 

  9. Kumasaki, M., Tanaka, H., and Kobayashi, A. (1998) Preparation and characterization of metal complexes with an extended TTF dithiolato ligand, bis(propylenedithiotetrathiafulvalenedithiolato)-nickelate and - cuprate, J. Mater. Chem. 8, 301–307.

    Article  CAS  Google Scholar 

  10. Nakano, M., Kuroda, A., Maikawa, T., and Matsubayashi, G. (1996) Synthesis and electrical conductivities of some metal complexes with the extended dithiolato ligand having a C8S8 skeleton, .Mol. Cryst. Liq. Cryst. 284, 301–305.

    Article  CAS  Google Scholar 

  11. Ueda, K., Kamata, Y., Iwamatsu, M., Sugimoto, T., and Fujita, H. (1999) A neutral bis(diethylthiotetrathiafulvalenyldiselenolato)nickel complex: a superior organic conductor to the corresponding dithiolato derivative, J. Mater. Chem. 9, 2979–2983.

    Article  CAS  Google Scholar 

  12. Kobayashi, A., Tanaka, H., Torii, H., Narymbetov, B., and Adachi, T. (1999) Origin of the high electrical conductivity of neutral [Ni(ptdt)2](ptdt2-=propylenedithiotetrathiafulvalenedithiolate) :A route to neutral moleculsr metal, J. Am. Chem. Soc. 121, 10763–10771.

    Article  CAS  Google Scholar 

  13. Tanaka, H., Okano, Y., Kobayashi, H. , Suzuki, W., and Kobayashi, A. (2001) A three-dimensional synthetic metallic crystal composed of single-component molecules, Science 291, 285–287.

    Article  CAS  Google Scholar 

  14. Kobayashi, A., Tanaka, H., and Kobayashi, H. (2001) Molecular design and development of single-component molecular metals, J. Mater. Chem. 11,2078–2088.

    Article  CAS  Google Scholar 

  15. Tanaka, H., Tokumoto, M., Yasuzuka, S., Uji, S., Choi, E., Graf, D., Brooks, J., Kobayashi, A., and Kobayashi, H. to be published.

    Google Scholar 

  16. Tsuda, A. and Osuka, A. (2001) Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared, Science 293, 79–82.

    Article  CAS  Google Scholar 

  17. For example, Kobayashi, A., and Kobayashi, H. (1997) in Handbook of Organic conductive molecules and polymers, Vol 1, ed. by Nalwa, H. S. John Wiley & Sons, New York. pp249–292. and references therein.

    Google Scholar 

  18. Binet, L., Fabre, J. M., Montginoul, C., Simonsen, K. B.,and Becher, J. (1996) Preparation and chemistry of new unsymmetrically substituted tetrachalcogenofulvalenes bearing CN(CH2)2X and HO(CH2)2X groups (X=S or Se), J. Chem. Soc., Perkin Trans. 1, 783–788.

    Article  Google Scholar 

  19. The joint density of state calculated based on the result of tight-binding band calculation with ΔE=0.1 eV gave the brad maximum around 0.3 eV, which is consistent with the observation of electronic absorption in the infrared region.

    Google Scholar 

  20. Tanaka, H., Kobayashi, H., and Kobayashi, A. (2002) A conducting crystal based on a single-component paramagnetic molecule, [Cu(dmdt)2], J. Am. Chem. Soc. 124, 10002–10003.

    Article  CAS  Google Scholar 

  21. Belo, D., Alves, H., Lopes, E. B., Duarte, M. T., Gama, V., Henriques, R. T., Almeida, M., Pérez-Benítez, A., Rovira, C., and Veciana, J. (2001) Gold complexes with dithiothiophene ligands: A metal based on a neutral molecule, Chem. Eur. J. 7, 511–519.

    Article  CAS  Google Scholar 

  22. Schiodt, N. C, BjØrnholm, T., Bechgaard, K., Neumeier, J. J., Allgeier, C., Jacobsen, C. S., and Thorup, N. (1996) Structural, electrical, magnetic, and optical properties of bis-benzene-l,2-dithiolato- Au(IV) crystals, Phys. Rev. B53, 1773–1778.

    Google Scholar 

  23. Schultz, A. J., Wang, H. H., Soderholm, L. C., Sifter, T. L., Williams, J. M., Bechgaard, K., and Whangbo, M-H. (1987) Crystal structures of [Au(DDDT)2]0 and [(n-Bu)4N][Ni(DDDT)2] and the ligandlike character of the isoelectronic radical [Au(DDDT)2]0 and [Ni(DDDT)2]-, Inorg. Chem. 26, 3757–3761.

    Article  CAS  Google Scholar 

  24. Suzuki, W., Fujiwara, E., Kobayashi, A., Fujishiro, Y., Nishibori, E., Takata, M., Sakata, M., Fujiwara, H., and Kobayashi, H. (2003) Highly conducting crystals based on single-component gold complexes with extended-TTF dithiolate ligands, J. Am. Chem. Soc. 125, 1486–1487.

    Article  CAS  Google Scholar 

  25. Ouahab, L. (1998) Coordination complexes in conducting and magnetic molecular materials, Coord. Chem. Rev. 180, 1501–1531.

    Article  Google Scholar 

  26. Aumüller, A., Erk, P., Klebe, G., Hünig, S., Von Schutz, J. U., and Werner, H. P. (1986) A radical-anion salt of 2,5-dimethyl-N, N’-dicyanoquinonediimine with extremely high electrical-conductivity, Angew. Chem. 25, 740–741.

    Article  Google Scholar 

  27. Kobayashi, A., Kato, R., Kobayashi, H., Mori, T., and Inokuchi, H. (1987) The organic π-electron metal system with interaction through mixed-valence metal cation: electronic and structural properties of radical salts of dicyanoquinonediimine, Solid State Commun. 64, 45–51.

    Article  CAS  Google Scholar 

  28. Quirion, G., Poirier, M., Liou, K. K., and Hoffman, B. M. (1991) Strong carrier scattering by a Cu2+ local moment array in one-dimensional molecular conductors CuxNi1-x(phthalocyaninato)I, Phys. Rev. B43, 860–864.

    Google Scholar 

  29. Hanasaki, N., Tajima, H., Matsuda, M., Naito T., and Inabe, T. (2000) Giant negative magnetoresistance in quasi-one-dimensional conductor TTP[Fe(Pc) (CN)2]2, Phys, Rev. B62, 5839–5842.

    Google Scholar 

  30. Almeida, M. and Henriques, R. (1997) in Handbook of Organic Conductive Molecules and Polymer, Vol 1, ed. Nalwa, H. S., J. Wiley, New York, pp87–149, and references therein.

    Google Scholar 

  31. Imai, H., Inabe, T., Otsuka, T., Okuno, T., and Awaga, K. (1996) Molecular spin ladder in the Ni(dmit)2 (dmit=1,3-dithiol-2-thione-4,5-dithiolate) salt with a nitronyl nitroxide cation, Phys, Rev. B54, R6838- R6840.

    Google Scholar 

  32. Ribera, E., Rovira, C, Veciana, J., Tarres, J., Canadell, E., Rousseau, R., Molins, E., Mas, M., Schoeffel, J.P., Pouget, J.P., Morgado, J., Henriques, R.T., Almeida, M. (1999) The [(DT-TTF)2M(mnt)2] family of radical ion salts: From a spin ladder to delocalised conduction electrons that interact with localised magnetic moments, Chem. Eur. J. 5, 2025–2039.

    Article  CAS  Google Scholar 

  33. Kurmoo, M., Graham, A. W., Day, P., Coles, S J., Hursthouse, M. B., Caulfield, J. L., Singleton, J., Pratt, F.L., Hayes, W., Ducasse, L., and Guionneau, P. (1995) Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3C6H5CN (A=H2O, K, NH4), J. Am. chem. Soc. 117, 12209–12217.

    Article  CAS  Google Scholar 

  34. Coronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J., and Laukhin, V. (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound, Nature 408, 447–449.

    Article  CAS  Google Scholar 

  35. Kobayashi, A., Udagawa, T., Tomita, H., Naito, T., and Kobayashi, H. (1993) New organic metals based on BETS compounds with MX4 - anions (BETS=bis(ethylenedithio)tetraselenafulvalene(; M=Ga, Fe, In,; X=C1, Br), Chem. Lett. 2179–2182.

    Google Scholar 

  36. Kobayashi, H., Kobayashi, A., and Cassoux, P. (2000) BETS as a source of molecular magnetic superconductors (BETS=bis(ethylenedithio)tetraselenafulvalene), Chem. Soc. Rev. 29, 325–333.

    Article  CAS  Google Scholar 

  37. Kobayashi, H., Sato, A., Arai, E., Akutsu, H., Kobayashi, A., and Cassoux, P. (1997) Superconductor-to-insulator transition in an organic metal incorporating magnetic anions; λ- (BETS)2(FexGa1-x)Cl4 [BETS=bis(ethylenedithio)tetraselenafulvalene; x≈0.55 and 0.43], J. Am. Chem. Soc. 119, 12392–12393.

    Article  CAS  Google Scholar 

  38. Ojima, E., Fujiwara, H., Kato, K., Kobayashi, H., Tanaka. H., Kobayashi, A., Tokumoto, M., and Cassoux, P. (1999) Antiferromagnetic organic metal exhibiting superconducting transition, k- (BETS)2FeBr4 [BETS=Bis(ethylenedithio)tetraselenafulvalene], J. Am. Chem. Soc. 121, 5581–5582.

    Article  CAS  Google Scholar 

  39. Fujiwara, H., Ojima, E., Nakazawa, Y., Narymbetov, B., Kato, K., Kobayashi, H., Kobayashi, A., Tokumoto, M., and Cassoux, P. (2001) A novel antiferromagnetic organic superconductor k- (BETS)2FeBr4 [where BETS=bis(ethylenedithio)tetraselenafulvalene], J. Am. Chem. Soc. 123, 306–314.

    Article  CAS  Google Scholar 

  40. Uji, S., Shinagawa, H., Terashima, T., Yakabe, T., Terai, Y., Tokumoto, M., Kobayashi, A., Tanaka, H., and Kobayashi, H. (2001) Magnetic-field-induced superconductivity in a two-dimensional organic conductor, Nature 410, 908–910.

    Article  CAS  Google Scholar 

  41. Brossard, L., Clerac, R., Coulon, C, Tokumoto, M., Ziman, T., Petrov, D. K., Laukhin, V. N., Naughton, M. J., Audouard, A., Goze, F., Kobayashi, A., Kobayashi, H., and Cassoux, P. (1998) Interplay between chains of S=5/2 localised spins and two-dimensional sheets of organic donors in the synthetically built magnetic multilayer λ- (BETS)2FeCl4, Eur. Phys. J. B1, 439–452.

    Google Scholar 

  42. Balicas, L., Brooks, J. S., Storr, K., Uji, S., Tokumoto, M., Tanaka, H., Kobayashi, H., Kobayashi, A., Barzykin, V., and Gorkov, L. P. (2001) Superconductivity in an organic insulator at very high magnetic fields, Phys. Rev. Lett. 87, 067002–1-4.

    Article  CAS  Google Scholar 

  43. Zhang, B., Tanaka, H., Fujiwara, H., Kobayashi, H., Fujiwara, E., and Kobayashi, A. (2002) Dual-action molecular superconductors with magnetic anions, J. Am. Chem. Soc, 124, 9982–9983.

    Article  CAS  Google Scholar 

  44. Fuiwara, H., Kobayashi, H., Fujiwara, E., and Kobayashi, A. (2002) An indication of magnetic-field-induced superconductivity in a bi-functional layered organic conductor, κ- (BETS)2FeBr4, J. Am. Chem. Soc. 124, 6816–6817.

    Article  Google Scholar 

  45. Céas, O., McKenzie, R. H., and Merino, J. (2002) Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments, Phys. Rev. B65, 100502(R)1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kobayashi, H. et al. (2004). Development of Single-Component Molecular Metals and Magnetic Molecular Superconductors. In: Ouahab, L., Yagubskii, E. (eds) Organic Conductors, Superconductors and Magnets: From Synthesis to Molecular Electronics. NATO Science Series, vol 139. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1027-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1027-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1942-5

  • Online ISBN: 978-94-007-1027-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics