Skip to main content

Superconducting quantum bit based on the Cooper pair box

  • Conference paper
  • 320 Accesses

Part of the book series: NATO Science Series ((NAII,volume 125))

Abstract

The more advanced proposals so far for the implementation of qubits and quantum gates for quantum computation[1] are based on ions or atoms in vacuum [2, 3]. These systems have been manipulated individually in a controlled fashion for about 20 years and techniques have reached a high level of sophistication. However, it is not clear yet if these proposals can be extended to the fabrication of a quantum processor which would be “scalable”, a jargon term referring to the situation where fabrication costs scale sufficiently ”gently” with the number of quantum bits and gates that quantum computation can overpower its classical counterpart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. DiVincenzo, ”Quantum gates and circuits,” Proc. R. Soc. Lond. A 454, 261–76 (1998)

    Google Scholar 

  2. D. Bouwmeester, A. Ekert, and A. Zeilinger, (Eds) ”The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation” (Springer Verlag, Berlin, 2000)

    Google Scholar 

  3. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.F Bocko, A. M. Herr and M.F. Feldman, IEEE Trans. Applied Supercond. 7, 3638–3641(1997)

    Article  Google Scholar 

  5. B. E. Kane, Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  6. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57,120–126 (1998)

    ADS  Google Scholar 

  7. Yu. Makhlin, G. Schoen and A. Shnirman, Nature 398, 786–789 (1999); Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Google Scholar 

  8. Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature 398, 786–788 (1999); Phys. Rev. Lett. 87, 246601 (2001); ibid. to be published [cond-mat/0111402].

    Article  ADS  Google Scholar 

  9. J.E. Mooij, et al., Science 285, 1036 (1999); Caspar H. van der Wal et al., Science 290, 773 (2000).

    Article  Google Scholar 

  10. Siyuan-Han, R. Rouse, J. E. Lukens, Phys. Rev. Lett. 84, 1300 (2000).

    Article  ADS  Google Scholar 

  11. B.E. Kane, N.S. McAlpine, A.S. Dzurak, R.G. Clark, G.J. Milburn, He Be Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000)

    ADS  Google Scholar 

  12. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 286–280 (2002)

    Article  Google Scholar 

  13. Y. Yu, S. Han, Xi Chu, S. Chu and Z. Wang, Science 296, 889 (2002)

    Article  ADS  Google Scholar 

  14. J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  15. M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).

    Article  ADS  Google Scholar 

  16. P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M.H. Devoret, Nature 365, 422 (1993).

    Article  ADS  Google Scholar 

  17. K.K. Likharev, “Dynamics of Josephson junctions and Circuits” (Gordon and Breach, New York, 1986).

    Google Scholar 

  18. M. Büttiker, Phys. Rev. B 36, 3548 (1987).

    ADS  Google Scholar 

  19. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Phys. Scr. T76, 165–170 (1998).

    Article  ADS  Google Scholar 

  20. W. H. Zurek, Physics Today 44, 36 (1991); W. H. Zurek and J. P. Paz, in Coherent atomic matter waves, edited by R. Kaiser, C. Westbrook and F. David, (Springer-Verlag Heidelberg 2000) [quant-ph/0010011].

    Article  Google Scholar 

  21. J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682–4698 (1987);M. H. Devoret, D. Esteve, C. Urbina, J. M. Martinis, A. N. Cleland, and J. Clarke, in Quantum Tunneling in Condensed Media edited by Y. Kagan and A.J. Leggett (Elsevier Science Publishers, 1992).

    ADS  Google Scholar 

  22. Another two-port design has been proposed by A. B. Zorin (cond-mat/0112351; to be published in Physica C)

    Google Scholar 

  23. A. Abragam, The principles of nuclear magnetism (Oxford University Press, 1961).

    Google Scholar 

  24. A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86,3376 (2001).

    Article  ADS  Google Scholar 

  25. D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).

    Google Scholar 

  26. Adifferent Cooper pair box readout scheme using a large Josephson junction is discussed by F._W. J. Hekking, O. Buisson, F. Balestro, and M. G. Vergniory, in Electronic Correlations: from Meso-to Nanophysics, T. Martin, G. Montambaux and J. Trân Thanh Vân, eds. (EDPSciences, 2001), p. 515.

    Google Scholar 

  27. A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, M.H Devoret., Physica C367, 197 (2002)

    ADS  Google Scholar 

  28. G. J. Dolan and J. H. Dunsmuir, Physica B152, 7 (1988).

    ADS  Google Scholar 

  29. A. Cottet, A. H. Steinbach, P. Joyez, D. Vion, H. Pothier, D. Esteve, and M. E. Huber, in Macroscopic quantum coherence and quantum computing, edited by D. V. Averin, B. Ruggiero, and P. Silvestrini, Kluwer Academic, Plenum publishers, New-York, 2001, p. 111–125.

    Chapter  Google Scholar 

  30. I. I. Rabi, Phys. Rev. 51, 652 (1937).

    Article  ADS  Google Scholar 

  31. N. F. Ramsey, Phys. Rev. 78, 695 (1950).

    Article  ADS  Google Scholar 

  32. In practice, the rotation axis does not need to be x, but the rotation angle of the two pulses is always adjusted so as to bring a spin initially along z into a plane perpendicular to z.

    Google Scholar 

  33. At fixed Δt, the switching probability displays a decaying oscillation as a function of detuning, the maximum corresponding to zero detuning.

    Google Scholar 

  34. H. Wolf, F.-J. Ahlers, J. Niemeyer, H. Scherer, Th. Weimann, A. B. Zorin, V. A. Krupenin, S. V. Lotkhov, D. E. Presnov, IEEE Trans. on Instrum. and Measurement 46, 303 (1997).

    Article  Google Scholar 

  35. F. C. Wellstood, C. Urbina, and J. Clarke, Appl. Phys. Lett. 50, 772–774 (1987).

    Article  ADS  Google Scholar 

  36. Critical current noise [B. Savo, F. C. Wellstood, and J. Clarke, Appl. Phys. Lett. 50, 1758-1760 (1987)] seems to be of a lesser concern since none of our results forces us to invoke it.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vion, D. et al. (2003). Superconducting quantum bit based on the Cooper pair box. In: Fazio, R., Gantmakher, V.F., Imry, Y. (eds) New Directions in Mesoscopic Physics (Towards Nanoscience). NATO Science Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1021-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1021-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1665-3

  • Online ISBN: 978-94-007-1021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics