Skip to main content

Quantum coherent transport: From mesoscopic circuits to molecular wires

  • Conference paper
  • 303 Accesses

Part of the book series: NATO Science Series ((NAII,volume 125))

Abstract

The purpose of these lectures is to present some basic signatures of phase coherent transport in various electronic systems going from mesoscopic to nanoscopic scales, from micron size Aharonov Bohm rings to molecular wires such as DNA and carbon Nanotubes. The Aharonov Bohm geometry is well suitable for the investigation of phase coherence in mesoscopic rings which exhibit orbital magnetism and electrical polarisability reminding the magnetic and electric responses of molecules. This is particularly the case for semiconducting rings where energy spectrum can be resolved. On the other hand proximity induced superconductivity is a powerful tool to reveal phase coherence in molecular wires. This is specially interesting in the case of DNA where very little is known on the nature of electronic transport. In the case of carbon nanotubes the observation of high values of supercurrent strongly suggest the existence of intrinsic superconducting fluctuations as corroborated by experiments on long ropes of carbon nanotubes on normal contacts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).

    ADS  Google Scholar 

  2. S. Washburn and R. Webb, Advances in Physics 35, 375 (1986).

    ADS  Google Scholar 

  3. B. L. Altshuler, A. G. Aronov and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)].

    Google Scholar 

  4. D. Y. Sharvin and Y. V. Sharvin, Pis’ma Zh. Eksp. Teor. Fiz. 34, 285 (1981) [JETP Lett. 34, 272 (1981)].

    Google Scholar 

  5. R. Deblock, Y. Noat, H. Bouchiat, B. Reuletand D. Mailly,Phys. Rev. B 65, 075301 (2002).

    ADS  Google Scholar 

  6. M. Büttiker, Y. Imry and R. Landauer, Phys. Rev. 96A, 365 (1983).

    Google Scholar 

  7. H. Cheung, E. Riedel and Y. Gefen, Phys. Rev. Lett. 62, 587 (1989).

    ADS  Google Scholar 

  8. G. Montambaux, H. Bouchiat, D. Sigeti and R. Friesner, Phys. Rev. B 42, 7647 (1990).

    ADS  Google Scholar 

  9. V. Ambegaokar and U. Eckern, Phys. Rev. Lett. 65, 381 (1990). V. Ambegaokar and U. Eckern, Europhys. Lett. 13(8), pp 733-738 (1990). U. Eckern, Z. Phys. B 82, 393 (1991).

    ADS  Google Scholar 

  10. A. Schmid, Phys. Rev. Lett. 66(1), 80 (1991).

    ADS  Google Scholar 

  11. F. Von Oppen and E. Riedel, Phys. Rev. Lett. 66, 84 (1991).

    ADS  Google Scholar 

  12. B.L. Altshuler, Y. Gefen and Y. Imry, Phys. Rev. Lett. 66, 88 (1991).

    ADS  Google Scholar 

  13. V.E. Kravtsov and B.L. Altshuler, Phys. Rev. Lett. 84, 3394 (2000).

    ADS  Google Scholar 

  14. V. Chandrasekhar et al., Phys. Rev. Lett.67, 3578 (1991).

    ADS  Google Scholar 

  15. D. Mailly, C. Chapelier and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).

    ADS  Google Scholar 

  16. E.M.Q. Jariwala, P. Mohanty, M.B. Ketchen and R.A. Webb, Phys. Rev. Lett. 86(8), 1594 (2001).

    ADS  Google Scholar 

  17. W. Rabaud et al. Phys. Rev. Lett. 86, 3124 (2001).

    ADS  Google Scholar 

  18. L.P. Lévy, G. Dolan, J. Dunsmuir and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990). L.P. Lévy, Physica B 169, 245-256 (1991).

    ADS  Google Scholar 

  19. B. Reulet, M. Ramin, H. Bouchiat and D. Mailly, Phys. Rev. Lett 75, 124, (1995).

    ADS  Google Scholar 

  20. R. Deblock, R.Bel, H. Bouchiat, B. Reulet and D. Mailly, Phys. Rev. Lett. 89, 206803(2002)

    ADS  Google Scholar 

  21. A. Kamenev and Y. Gefen, Phys. Rev. B 49, 14474 (1994).

    ADS  Google Scholar 

  22. M. Schechter, Y. Oreg, Y. Imry, Y. Levinson, Phys. Rev. Lett. 90 026805 (2003)

    ADS  Google Scholar 

  23. S. Strässler, M.J. Rice and P. Wyder, Phys. Rev. B 6, 2575 (1972); M.J. Rice, W. R. Schneider and S. Strässler, Phys. Rev. B 8, 474 (1973).

    ADS  Google Scholar 

  24. K.B. Efetov, Phys. Rev. Lett. 76, 1908 (1996).

    Google Scholar 

  25. Y. Noat, B. Reulet and H. Bouchiat, Europhys. Lett. 36(9), pp. 701–706 (1996).

    ADS  Google Scholar 

  26. Ya.M. Blanter and A.D. Mirlin, Phys. Rev. B 57, 4566 (1998).

    ADS  Google Scholar 

  27. R. Deblock, Y. Noat, H. Bouchiat, B. Reulet and D. Mailly, Phys. Rev. Lett. 84(23), 5379 (2000).

    ADS  Google Scholar 

  28. Y. Noat, R. Deblock, B. Reulet and H. Bouchiat, 65, 075325 (2002).

    Google Scholar 

  29. Ya. M. Blanter and A.D. Mirlin, Phys. Rev. B 63 113315 (2001).

    ADS  Google Scholar 

  30. N. Trivedi and D. A. Browne, Phys. Rev. B 38, 9581 (1988).

    ADS  Google Scholar 

  31. B. Reulet and H. Bouchiat, Phys. Rev. B 50, 2259 (1994).

    ADS  Google Scholar 

  32. A. Kamenev, B. Reulet, H. Bouchiat, and Y. Gefen, Europhysics Letters 28, 391 (1994)

    ADS  Google Scholar 

  33. U. Sivan and Y. Imry, Phys. Rev. B, 35, 6074, (1987).

    ADS  Google Scholar 

  34. M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels. New York: Academic Press 1967.

    MATH  Google Scholar 

  35. L.P. Gor’kov, G.M. Eliashberg, Sov. Phys.-JETP 21, 940 (1965); B. I. Shklovskii, Pis’ma Zh. Eksp. Teor. Fiz. 36, 287 (1982) [ JETP Lett. 36, 352 (1982)].

    ADS  Google Scholar 

  36. D. Jérome and H.J. Schulz, Adv. Phys. 31 299, (1982).

    ADS  Google Scholar 

  37. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  38. C. Wan, T. Fiebig, S.O. Kelley, C.R. Treadway, J.K. Barton and A.H. Zewail, Proc. Natl. Acad. Sci. USA 96, 6014 (1999).

    ADS  Google Scholar 

  39. Y. Okahata, T. Kobayashi, H. Nakayama and K. Tanaka, Supramolecular Science 5, 317 (1998).

    Google Scholar 

  40. H. W. Fink and C. Schoenenberger, Nature 398, 407 (1999).

    ADS  Google Scholar 

  41. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 391, 775 (1998).

    ADS  Google Scholar 

  42. D. Porath, A. Bezryadin, S. de Vries and C. Dekker, Nature 403,635 (2000).

    ADS  Google Scholar 

  43. G. Deutscher and P.G. deGennes in Superconductivity (Ed. R.D. Parks, Marcel Dekker Inc., 1969).

    Google Scholar 

  44. H.Courtois, Ph. Gandit, B. Panetier, Phys. Rev. B 52 1162 (1995).

    ADS  Google Scholar 

  45. For a review of suppercurrents through superconducting junctions see: K. Likharev, Rev. Mod. Phys. 51,101 (1979).

    ADS  Google Scholar 

  46. P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin, and G. Schn Phys. Rev. B 63 333, 064502 (2001)

    ADS  Google Scholar 

  47. D. V. Klinov Nucleic Acids Res. 26, 4603 (1998).

    Google Scholar 

  48. V.V. Prokhorov, D.V. Klinov, and V.V. Demin, Russian Journal of Bioorganic Chemistry 25, 211 (1999).

    Google Scholar 

  49. J. Dubochet, M. Ducommun, M. Zollinger, and E. Kellenberger, J. Ultrastruct. Res. 35, 147 (1971).

    Google Scholar 

  50. Two leveled plastic tubes connected to the outlets of a peristatic pump (in order to control the flow-rate ) were fixed on the sample holder touching the mica surface. The DNA solution (0.1 ng/μ l DNA, 20 mM NH 4 CH 3 COOH, 7–9 mM MgCl 2) flowed from one tube into the other with a velocity of roughly 1–2 cm/sec.

    Google Scholar 

  51. A. Kasumovand D. Klinov to be published.

    Google Scholar 

  52. A. Yu. Kasumov, et al. Science 291, 280 (2001).

    ADS  Google Scholar 

  53. M. Ratner, Nature 397, 480 (1999).

    ADS  Google Scholar 

  54. J. Jordner, J. Bixon, M. Langenbacher, T. Michel-Beryerle, Proc.Natl.Acad.Sci. USA 9512759 (1998).

    ADS  Google Scholar 

  55. A. A. Odinstov and Y. Tokura, to appear in Physica B (2000).

    Google Scholar 

  56. R. Egger, A. Gogolin, Phys. Rev. Lett. 79, 5082 (1997). R. Egger, Phys. Rev. Lett. 83, 5547 (1999).

    ADS  Google Scholar 

  57. C. Kane, L. Balents, M. P. Fisher, Phys. Rev. Lett 79, 5086 (1997).

    ADS  Google Scholar 

  58. M. Bockrath et al., Nature 397, 598 (1999).

    ADS  Google Scholar 

  59. H. Grabert and M. H. Devoret (eds), Single Charge Tunneling (Plenum, New-York, 1992);J. T. Tans et al., Nature 386, 474 (1997).

    Google Scholar 

  60. A.Yu. Kasumov, I.I. Khodos, P.M. Ajayan, C. Colliex, Europhys. Lett. 34, 429 (1996); A.Yu. Kasumov et al., Europhys. Lett. 43, 89 (1998).

    ADS  Google Scholar 

  61. A.Yu. Kasumov et al., Science 284, 1508 (1999).

    ADS  Google Scholar 

  62. C. Journet, et al., Nature 388, 756 (1997).

    ADS  Google Scholar 

  63. L. Vaccarini, et al., C.R.Acad.Sci.327,925 (1999).

    ADS  Google Scholar 

  64. M. Burghard et al, Electronic Properties of Novel Materials (Eds H. Kuzmany et al,) AIP, New York (1998).

    Google Scholar 

  65. J. Nygard, D.H. Cobden and P.E. Lindelof, Nature 408, 342 (2000).

    ADS  Google Scholar 

  66. I. Safi and H. J. Schulz, Phys.Rev.B 52, R17040 (1995).

    ADS  Google Scholar 

  67. A.Yu. Kasumov et al., Science 284, 1508 (1999).

    ADS  Google Scholar 

  68. J. Meyer, G. V. Minnigerode, Physics Letters, 38A, 7, 529 (1972)

    ADS  Google Scholar 

  69. R. Fazio, F.W.J Hekking and A.A. Odintsov, Phys. Rev., B 53, 6653 (1995).

    Google Scholar 

  70. D. Maslov, M. Stone, P.M. Goldbart, D. Loss Phys. Rev., B 53, 1548 (1995).

    Google Scholar 

  71. I. Affleck, J.B. Caux and A. Zagoskin Phys. Rev., B 62, 1433 (2000).

    ADS  Google Scholar 

  72. J. Gonzalez, Phys. Rev. Lett. 87, 136401 (2001).

    ADS  Google Scholar 

  73. D. J. Thouless, Phys. Rev. Lett. 39, 1967 (1977).

    ADS  Google Scholar 

  74. N. Giordano, Phys. Rev. B 50, 160 (1991).

    ADS  Google Scholar 

  75. Tinkham, M., Introduction to superconductivity, McGraw-Hill, 2d Ed. (Singapore, 1996).

    Google Scholar 

  76. W. Belzig, C. Bruder and G. Schön, Phys. Rev. B 54, 9443 (1996).

    ADS  Google Scholar 

  77. P. Roche, M. Kociak, S. Gueron, A. Kasumov, B. Reulet and H. Bouchiat Eur. Phys. J.B. 28, 217–222 (2002).

    ADS  Google Scholar 

  78. J. Gonzalez Phys. Rev. Lett. 88, 076403 (2002)

    Google Scholar 

  79. R. A. Smith, B. S. Handy, and V. Ambegaokar Phys. Rev. B 63, 094513 (2001)

    ADS  Google Scholar 

  80. R. Meservey, P.M. Tedrow, Phys. Rep. 238, no.4, 173 (1994).

    ADS  Google Scholar 

  81. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    ADS  Google Scholar 

  82. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    ADS  Google Scholar 

  83. Z.K. Tang et al. Science 292, 2462 (2001).

    ADS  Google Scholar 

  84. N. B. Hannay et al., Phys. Rev. Lett. 14, 225 (1965).

    ADS  Google Scholar 

  85. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

    ADS  Google Scholar 

  86. L. C. Venema et al., Science 283, 52 (1999).

    ADS  Google Scholar 

  87. A.A. Odintsov, Phys. Rev. Lett. 85, 150 (2000).

    ADS  Google Scholar 

  88. A. de Martino and R. Egger (to be published).

    Google Scholar 

  89. D. Loss, and T. Martin, Phys. Rev. B 50, 12160 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bouchiat, H. et al. (2003). Quantum coherent transport: From mesoscopic circuits to molecular wires. In: Fazio, R., Gantmakher, V.F., Imry, Y. (eds) New Directions in Mesoscopic Physics (Towards Nanoscience). NATO Science Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1021-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1021-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1665-3

  • Online ISBN: 978-94-007-1021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics