Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 125))

  • 303 Accesses

Abstract

In low-dimensional metals the presence of massless excitations may lead to a breakdown of the Landau Fermi-liquid description, which successfully applies to higher- dimensional metals. This breakdown is mirrored by infrared divergences which plague the perturbative treatment of models for low-dimensional metals, despite the fact that the metallic phase is a stable liquid phase of the matter. However, the very condition of stability of the system implies exact cancellations among the singular terms in the response functions, controlled by additional Ward identities, which must be considered besides the standard Ward identities related to the conservation of the total particle and spin density. The combined use of renormalization group and of these Ward identities allows for the closure of the renormalization-group equations, leading to the description of the asymptotic (infrared) behavior of the low-dimensional metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. G. Wilson, Phys. Rev. B 4, 3174 (1971); ibid., 3184 (1971).

    ADS  Google Scholar 

  2. J. Sólyom, Adv. Phys. 28, 201 (1979).

    Article  ADS  Google Scholar 

  3. W. Metzner, C. Castellani, and C. Di Castro, Adv. Phys. 47, 317 (1998).

    Article  ADS  Google Scholar 

  4. G. Benfatto and G. Gallavotti, Phys. Rev. B 42, 9967 (1990); J. Stat. Phys. 59, 541 (1990).

    ADS  Google Scholar 

  5. R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Nozières, Theory of Interacting Fermi systems, Benjamin, Amsterdam (1964); G. Baym and C. Pethick, in The physics of liquid and solid Helium, edited by K. H. Bennemann and J. H. Ketterson, John Wiley and Sons, New York (1978).

    Google Scholar 

  7. For a review see, e.g., P. W. Anderson, The Theory of Superconductivity in the High Tc Cuprates, Princeton University Press, Princeton (1997).

    Google Scholar 

  8. S. Uchida, J. Appl. Phys. 32, 3784 (1993).

    Article  Google Scholar 

  9. For an overview on the pseudogap as measured in various experiments see, e.g., T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Google Scholar 

  10. T. Valla, A. V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu, Sand N. Koshizuka, Science 285, 2110 (1999).

    Article  Google Scholar 

  11. P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); ibid. 65, 2306 (1990).

    Article  ADS  Google Scholar 

  12. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  13. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  14. C. Castellani, C. Di Castro, and M. Grilli, Phys. Rev. Lett. 75, 4650 (1995); Z. Phys. B 103, 137 (1997); for a recent review see, e.g., C. Di Castro, L. Benfatto, S. Caprara, C. Castellani, and M. Grilli, Physica C 341-348, 1715 (2000).

    Article  ADS  Google Scholar 

  15. P. Monthoux A. V. Balatsky D. Pines Phys. Rev. B 46, 14803 (1992);

    Google Scholar 

  16. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995);J. M. Tranquada, J. D. Axe, N. Ichikawa, Y. Nakamura, S. Uchida, and B. Nachumi, Phys. Rev. B 54, 7489 (1996).

    Article  ADS  Google Scholar 

  17. V. J. Emery, S. A. Kievelson, and H. Q. Lin, Phys. Rev. Lett. 64, 475 (1990).

    Article  ADS  Google Scholar 

  18. C. Castellani, C. Di Castro, and W. Metzner, Phys. Rev. Lett. 72, 316 (1994).

    Article  ADS  Google Scholar 

  19. P. Bares and X. G. Wen, Phys. Rev. B 48, 8636 (1993).

    ADS  Google Scholar 

  20. C. Castellani and C. Di Castro, Physica C 235-240,99 (1994).

    ADS  Google Scholar 

  21. C. Castellani, S. Caprara, C. Di Castro, and A. Maccarone, Nucl. Phys. B 594, 747 (2001).

    Article  ADS  Google Scholar 

  22. H. J. Schulz, in Proceedings of the Les Houches Summer School LXI, Edited by E. Akkermans, G. Montambaux, J. L. Pichard, and J. Zinn-Justin, Elsevier, Amsterdam (1995).

    Google Scholar 

  23. J. Voit, Rep. Prog. Phys. 58, 977 (1995).

    Article  ADS  Google Scholar 

  24. W. Metzner and C. Di Castro, Phys. Rev. B 47, 16107 (1993).

    ADS  Google Scholar 

  25. P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980); for a review see, e.g., D. L. Cox and A. Zawadowski, Adv. Phys., 47, 599 (1998).

    Article  Google Scholar 

  26. For a review see, e.g., P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 787 (1985); D._Belitz and T. R. Kirkpatrick, ibid. 66, 261 (1994).

    Article  ADS  Google Scholar 

  27. A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

    ADS  Google Scholar 

  28. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950); J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  29. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  30. D. C. Mattis, J. Math. Phys. 15, 609 (1974).

    Article  ADS  Google Scholar 

  31. F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980); ibid. 47, 1840 (1981); J. Phys. C 14, 2585 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  32. I. E. Dzyaloshinskii and A. I. Larkin, Sov. Phys. JETP 38, 202 (1974).

    ADS  Google Scholar 

  33. H. U. Everts and H. Schulz, Solid State Commun. 15, 1413 (1974).

    Article  ADS  Google Scholar 

  34. C. DiCastro and W. Metzner, Phys. Rev. Lett. 67, 3852 (1991).

    Article  ADS  Google Scholar 

  35. C. Bourbonnais and L. G. Caron, Int. J. Mod. Phys. B 5, 1033 (1991).

    MathSciNet  ADS  Google Scholar 

  36. C. Castellani, C. DiCastro, and W. Metzner, Phys. Rev. Lett. 69, 1703 (1992).

    Article  ADS  Google Scholar 

  37. M. Fabrizio, A. Parola, and E. Tosatti, Phys. Rev. B 46, 3159 (1992).

    ADS  Google Scholar 

  38. A. Houghton, H.-J. Kwon, and J. B. Marston, Phys. Rev. B 50, 1351 (1994).

    ADS  Google Scholar 

  39. P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions, Springer, Berlin (1997).

    Google Scholar 

  40. A. Houghton and J. B. Marston, Phys. Rev. B 48, 7790 (1993).

    ADS  Google Scholar 

  41. F. D. M. Haldane, in Proceedings of the International School of Physics ‘Enrico Fermi’, Course CXXI, edited by R.A. Broglia and J.R. Schrieffer, North-Holland, Amsterdam, (1994); Elv. Phys. Acta 65, 152 (1992).

    Google Scholar 

  42. P. Kopietz and K. Schönhammer, Z. Phys. B 100, 561 (1996).

    Google Scholar 

  43. For a general overview and references see, e.g., Proceedings of the Workshop on Phase Separation in Cuprate Superconductors, Edited by K. A. Müller and G. Benedek, World Scientific, Singapore (1992).

    Google Scholar 

  44. V. J. Emery and S. A. Kivelson, in Ref.[43]; V. J. Emery and S. A. Kivelson, Physica C 209, 597 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Di Castro, C., Caprara, S. (2003). Non-Fermi-liquid metals in low dimensions. In: Fazio, R., Gantmakher, V.F., Imry, Y. (eds) New Directions in Mesoscopic Physics (Towards Nanoscience). NATO Science Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1021-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1021-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1665-3

  • Online ISBN: 978-94-007-1021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics