Skip to main content

Phase Separation in CMR Materials: The Role of Spin Nanoclusters

  • Conference paper
Nanostructures: Synthesis, Functional Properties and Applications

Part of the book series: NATO Science Series ((NAII,volume 128))

  • 501 Accesses

Abstract

Manganese perovskites, with the general formula REMnO3 (RE=Rare Earth), display a wealth of new phenomena on substitution of part of the trivalent RE by a divalention of the alcaline earth series (Ca, Sr etc.). This doping results in the formation of a mixed valence system (Mn3+ , Mn4+) with a rich phase diagram with ferromagnetic insulators at low doping, ferromagnetic conductors, at higher doping and antiferromagnetic insulators at doping higher than 50%. The system displays magnetic phase separation in the phase boundaries while application of a magnetic field brings the system in its ground state which is usually the metallic ferromagnetic state. The result of this process is the appearance of colossal negative magnetoresistance (CMR) with many potential applications. There has been an intensive study of these systems during the past 5 years in order to elucidate this new phenomenon at the atomic level. The double electron exchange (Zener) and the Jahn-Teller effect are the basic principles governing the CMR effect, although there are basic questions that are still open. It has now been established, within the relevant scientific community, that these phenomena arise from an interplay of the charge, magnetic moment (spin and orbital) and lattice degrees of freedom. Among the many experimental techniques that have been employed for these studies, the spectroscopic techniques for hyperfine interaction studies are of prime interest since they provide information at the atomic level. In this work, we present the results of Moessbauer studies in La0.5Ca0.5MnO3 doped with 1% 57Fe and 1% 119Sn. These results show the coexistence of phases, in particular close to the phase boundaries, the dynamic transformation of one phase to the other and the role of the formation of spin-nanoclusters during this transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent reviews see: Dagotto, E, Hotta, T, Moreo, A (2001) Colossal Magnetoresistant materials: the key role of phase separation, Physics Reports 344, 1–153. Nagaev, E. L. (2001) Colossalmagnetoresistance materials: manganites and conventional ferromagnetic semiconductors, Physics Reports 346,387-531.

    Article  CAS  Google Scholar 

  2. Wollan, E.O, Koehler, W. C (1955) Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x) La, xCa]MnO3, Phys. Rev. 100,545–563.

    CAS  Google Scholar 

  3. Schiffer, P, Ramirez, A. P, Bao, W, Cheong, S.-W (1995) Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3, Phys. Rev. Let. 75, 3336–3339.

    Article  CAS  Google Scholar 

  4. Nagaev, E. L (1998) Underdoped manganites: canted antiferromagnetic ordering or two-phase ferroantiferromagnetic state?, J. Exp Theor. Phys. 87, 1214–1220.

    Article  Google Scholar 

  5. Moreo, A, Yunoki, S, Dagotto, E (1999) Phase separation scenario for manganese oxides and related materials, Science 283, 2034–2040.

    Article  CAS  Google Scholar 

  6. Xiao, G, et al (1997) Magnetic field induced properties of manganite perovskites with colossal magnetoresistance, J. Appl. Phys., 81 (8) 5324–5329.

    Article  CAS  Google Scholar 

  7. Roy, M, Mitchell, J. F, Ramirez, A. P, Schiffer, P (1999) A study of the magnetic and electrical crossover region of La0.5Ca0.5MnO3, J. Phys. Cond. Matt., 11(25) 4843–4859

    Article  CAS  Google Scholar 

  8. Mori, S, Chen, C. H, Cheong, S-W (1998) Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3, Phys. Rev. Lett., 76, 3972–3275; Pissas, M., Kallias, G. (2002), Phase diagram of the La1-xCaxMnO3 compound for 0.5≤ x≤ 0.9 cond-matt. 0205410.

    Article  Google Scholar 

  9. Chen, C. H Cheong, S-W (1996) Commensurate to Incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3, Phys. Rev. Lett. 76, 4042–4045.

    Article  CAS  Google Scholar 

  10. Kallias, G, Pissas, M, Hoser, A (2000) Neutron diffraction study of La0.5Ca0.5MnO3 under an external magnetic field, Physica B 276-278, 778.

    Article  CAS  Google Scholar 

  11. Heffner, R. H et al (1996) Ferromagnetic ordering and unusual magnetic ion dynamics in La0.67Ca0.33MnO3, Phys. Rev. Lett 17, 1869–1972.

    Article  Google Scholar 

  12. Chechersky, V et al (1999) Comparative studies of the behavior of La0.8Ca0.2MnO3 with different oxygen isotope substitutions, J. Phys. Condens. Matter, 11, 8921–8931.

    Article  Google Scholar 

  13. Kallias, G, Pissas, M, Devlin, E, Simopoulos, A, Niarchos, D (1999) Moessbauer study of 57Fe-doped La0.5Ca0.5MnO3, Phys. Rev. B, 59,1272–1276.

    Article  CAS  Google Scholar 

  14. Simopoulos, A, Kallias, G, Devlin, E Pissas, M (2000) Phase separation in LaosCao.sMnOs doped with 1% 119Sn detected by Moessbauer spectroscopy, Phys. Rev. B, 63 054403-1-054403-7

    Google Scholar 

  15. Ann, K. H, Wu, X. W, Liu, K, Chien, C. L (1996) Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe, Phys. Rev. B, 54, 15299.

    Article  Google Scholar 

  16. Maignan, A Martin, C, Raveau, B (1997) Z. Phys. B 102, 19.

    Article  CAS  Google Scholar 

  17. Le Caer, G, Dubois, J. M (1979) J. Phys. E 12, 1083.

    Article  Google Scholar 

  18. Pissas, M, Kallias, G, Devlin, E, Simopoulos, A, Niarchos, D (1997) Moessbauer study of La0.75Ca0.25Mn0.98Fe0.02O3 compound, J. Appl. Phys. 81, (8) 5770–2.

    Article  CAS  Google Scholar 

  19. Ogale, B et al (1998) Transport properties, magnetic ordering, and hyperfine interactions in Fe doped La0.75Ca0.25MnO3: Localization-delocalization transition. Pys. Rev. B 57,7841–7845.

    Article  CAS  Google Scholar 

  20. Tkatchuk, A et al (1998) Dynamics of phase stability and magnetic order in magnetoresistive La0.83Sr0.17Mn0.98 57Fe0.02O3, Phys. Rev. 57, 8509–8517.

    Article  Google Scholar 

  21. Simopoulos A, Kallias, G, Devlin, E, Panayotopoulos. I, Pissas, M (1998) Spin fluctuations in La2/3Ca1/3MnO3 probed by 57Fe and 119Sn Moessbauer spectroscopy, J. Magn. Magn. Mater. 177-181, 860–861

    Article  Google Scholar 

  22. Simopoulos, A, Kallias, G, Devlin, E, Panayotopoulos, I, Niarchos, D, Christides, C, Sonntag, R (1999) Study of Fe-doped La1-xCaxMnO3 (x=1/3) using Moessbauer spectroscopy and neutron diffraction. Phys. Rev. B 59, 1263–1271.

    Article  CAS  Google Scholar 

  23. Chechersky, V et al (1999) Evidence for breakdown of ferromagnetic order below Tc in the manganite La0.8Ca0.2MnO3 Phys. Rev. B 59,497–502.

    Article  CAS  Google Scholar 

  24. van der Woude, F Dekker, A. J (1965) The relation between magnetic properties and the shape of Moessbauer spectra, phys. stat. solidi 9,775.

    Article  Google Scholar 

  25. Eibschutz, M, Shtriktman, S, Treves, D (1967) Mossbauer Studies of 57Fe in Orthoferrites, Phys. Rev. 156, 562–577.

    Article  Google Scholar 

  26. Wertheim, G. K, Buchanan, D.N.E, Wemick, J.H (1970) Solid State Com. 8,2173.

    Article  CAS  Google Scholar 

  27. Kuwahara, H, Tomioka, Y, Asamitsu, A, Moritomo, Y, Tokura, Y (1995) A first order phase transition induced by a magnetic field, Science 270, 961–963.

    Article  CAS  Google Scholar 

  28. Radaelli, P.G, Cox, D. E, Marezio, M, Cheong, S.-W (1997) Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3, Phys. Rev. B 55, 3015–3023.

    Article  CAS  Google Scholar 

  29. Allodi, G, De Renzi, R, Licci, F, Pieper, M (1998) First order nucleation of charge-ordered domains in La0.5Ca0.5MnO3 detected by 139La and 55Mn NMR, Phys. Rev. Lett. 81,4736–4739.

    Article  CAS  Google Scholar 

  30. Huang, Q et al (2000) Temperature and field dependence of the phase separation, structure, and magnetic ordering in La1-xCaxMnO3 (x=0.47, 0.50, and 0.53), Phys. Rev. B 61, 8895–8905.

    Article  CAS  Google Scholar 

  31. Papavassiliou, G et al (1998) NMR in manganese perovskites: Detection of spatially varying electron states in domain walls, Phys. Rev. B 58, 12237–12241.

    Article  CAS  Google Scholar 

  32. Dho, J, Kim, I, Lee, S (1999) Phase separation in La0.5Ca0.5MnO3 observed by 55Mn and 139La NMR, Phys. Rev. B 60, 14545–14548.

    Article  CAS  Google Scholar 

  33. Moreo, A, Yunoki, S Dagotto, E (1999) Pseudogap formation in models for manganites, Phys. Rev. Lett., 83,2773–2776.

    Article  CAS  Google Scholar 

  34. Allodi, G, De Renzi, R, Solzi, M Kamenev, G, Balakrishnan, G, Pieper, M. W (2000) Field-induced segregation of ferromagnetic nanodomains in Pr0.5Sr0.5MnO3 detected by 55Mn NMR, Phys. Rev. B 61, 5924–5927.

    Article  CAS  Google Scholar 

  35. Lynn, J. W et al (1996) Phys. Rev. Lett. 76,4046–4049.

    Article  CAS  Google Scholar 

  36. Vasiliu-Doloc, L, et al (1997) Neutron scattering investigation of the structure and spin dynamics in La0.85Sr0.15MnO3, J. Appl. Phys. 81, 5491–5493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Simopoulos, A., Pissas, M., Kallias, G., Devlin, E. (2003). Phase Separation in CMR Materials: The Role of Spin Nanoclusters. In: Tsakalakos, T., Ovid’ko, I.A., Vasudevan, A.K. (eds) Nanostructures: Synthesis, Functional Properties and Applications. NATO Science Series, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1019-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1019-1_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1753-7

  • Online ISBN: 978-94-007-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics