Skip to main content

The Influence of the Grain Boundary Phase Transitions on the Properties of Nanostructured Materials

  • Conference paper
Nanostructures: Synthesis, Functional Properties and Applications

Part of the book series: NATO Science Series ((NAII,volume 128))

  • 506 Accesses

Abstract

Grain boundary (GB) phase transitions can change drastically the properties of nanograined polycrystals, leading to enhanced plasticity or brittleness, increasing diffusion permeability. They influence also liquid-phase and activated sintering, soldering, processing of semi-solid materials. The GB wetting phase transition can occur in the two-phase area of the bulk phase diagram where the liquid (L) and solid (S) phases are in equlibrium. The GB wetting tie line appears in the L+S area. Above the temperature of the GB wetting phase transition a GB cannot exist in equlibrium contact with the liquid phase. The liquid phase has to substitute the GB and to separate both grains. The GB wetting tie-line can continue in the one-phase area of the bulk phase diagram as a GB solidus line. This line represents the GB premelting or prewetting phase transitions. The GB properties change drastically when GB solidus line is crossed by a change in the temperature or concentration. In case if two solid phase are in equilibrium, the GB “solid state wetting” (or covering) can occur. In this case the layer of the solid phase 2 has to substitute GBs in the solid phase 1. Such covering GB phase transition occurs if the energy of two interphase boundaries between phase 1 and 2 is lower than the GB energy in the phase 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langdon, T.G., Watanabe, T., Wadsworth, J., Mayo, M.J., Nutt, S.R., and Kassner, M. E. (1993) Future research directions for interface engineering in high-temperature plasticity, Mater. Sci. Eng. A 166, 237.

    Article  Google Scholar 

  2. Straumal, B.B. and Gust, W. (1996) Lines of grain boundary phase transitions on the bulk phase diagrams, Mater. Sci. Forum 207-209, 59–68.

    Article  CAS  Google Scholar 

  3. Straumal, B., Molodov, D., and Gust, W. (1994) Tie lines of the grain boundary wetting phase transition in the Al-Sn system, J. Phase Equilibria 15, 386–391.

    Article  CAS  Google Scholar 

  4. Straumal, B., Muschik, T., Gust, W., and Predel, B. (1992) The wetting transition in high and low energy grain boundaries in the Cu(In) system, Acta metall. mater. 40, 939–945.

    Article  CAS  Google Scholar 

  5. Chang, L.-S., Rabkin, E., Straumal, B.B., Hofmann, S., Baretzky, B., and Gust, W. (1998) Grain boundary segregation in the Cu-Bi system, Defect Diff. Forum 156, 135–146.

    Article  CAS  Google Scholar 

  6. Straumal, B., Semenov, V., Glebovsky, V., and Gust, W. (1997) Grain boundary wetting phase transitions in the Mo-Ni system. Defect Diff. Forum 143-147, 1517–1522.

    Article  CAS  Google Scholar 

  7. Straumal, B.B., Gust, W., and Watanabe, T. (1999) Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn-Sn phase diagram, Mater. Sci. Forum 294-296, 411–414.

    Article  CAS  Google Scholar 

  8. Ernst, F., Finnis, M.W., Koch, A., Schmidt, C, Straumal, B., and Gust, W. (1996) Structure and energy of twin boundaries in copper, Z. Metallic. 87, 911–922.

    CAS  Google Scholar 

  9. Straumal, B.B. and Shvindlerman, L.S. (1985) Regions of existence of special and non-special grain boundaries, Acta metall. 33, 1735–1749.

    Article  Google Scholar 

  10. Maksimova, E.L., Shvindlerman, L.S., and Straumal, B.B. (1988) Transformation of D17 special tilt boundaries to general boundaries in tin, Acta metall. 36, 1573–1583.

    Article  CAS  Google Scholar 

  11. Cahn, J.W. (1977) Wetting transitions on surface, J. Chem. Phys. 66, 3667–3679.

    Article  CAS  Google Scholar 

  12. Dietrich, S. (1988) Wetting transitions in interfaces, in C. Domb and J.H. Lebowitz (eds.), Phase Transitions and Critical Phenomena, 12, Academic Press, London, pp. 2–218.

    Google Scholar 

  13. Jasnov, D. (1984) Phase transitions on surfaces, Rep. Prog. Phys. 47, 1059–1070.

    Article  Google Scholar 

  14. de Gennes, G. (1985) Wetting: statics and dynamics, Rev. Mod. Phys. 57, 827–863.

    Article  Google Scholar 

  15. Kellay, H., Bonn, D., and Meunier, J. (1993) Prewetting in a binary liquid mixture, Phys. Rev. Lett. 71, 2607–2610.

    Article  CAS  Google Scholar 

  16. Schmidt, J.W. and Moldover, M.R. (1983) First-order wetting transition at a liquid-vapor interface, J. Chem. Phys. 79, 379–387.

    Article  CAS  Google Scholar 

  17. Eustatopoulos, N., Coudurier, L., Joud, J.C., and Desre, P. (1976) Solid-liquid interface tension of Al-Sn, Al-In and Al-Sn-In systems, J. Crystal Growth 33, 105–115.

    Article  Google Scholar 

  18. Straumal, B., Gust, W., and Molodov, D. (1995) Wetting transition on the grain boundaries in Al contacting with Sn-rich melt, Interface Sci. 3, 127–132.

    Article  CAS  Google Scholar 

  19. Straumal, B., Molodov, D., and Gust, W. (1996) Grain boundary wetting phase transitions in the Al-Sn and Al-Pb-Sn systems, Mater. Sci. Forum 207-209, 437–440.

    Article  CAS  Google Scholar 

  20. Straumal, B., Risser, S., Sursaeva, V., Chenal, B., and Gust, W. (1995) Grain growth and grain boundary wetting transitions in the Al-Ga and Al-Sn-Ga alloys of high purity, J. Physique IV5-C7, 233–241.

    Google Scholar 

  21. Molodov, D.A., Czubayko, U., Gottstein, G., Shvindlerman, L.S., Straumal, B.B., and Gust, W. (1995) Acceleration of grain boundary motion in Al by small additions of Ga, Phil. Mag. Lett. 72, 361–368.

    Article  CAS  Google Scholar 

  22. Chang, L.-S., Straumal, B.B., Rabkin, E., Gust, W., and Sommer, F. (1997) The solidus line of the Cu-Bi phase diagram, J. Phase Equilibria 18, 128–135.

    Article  CAS  Google Scholar 

  23. Chang, L.-S., Rabkin, E., Straumal, B., Lejcek, P., Hofmann, S., and Gust, W. (1997) Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals, Scripta mater. 37, 729–735.

    Article  CAS  Google Scholar 

  24. Rabkin E.I., Semenov, V.N., Shvindlerman, L.S., and Straumal, B.B. (1991) Penetration of tin and zinc along tilt grain boundaries 43°[100] in Fe-5at.%Si alloy: Premelting phase transition? Acta metall. mater. 39, 627–639.

    Article  CAS  Google Scholar 

  25. Noskovich, O.I., Rabkin, E.I., Semenov, V.N., Shvindlerman, L.S., and Straumal, B.B. (1991) Wetting and premelting phase transitions in 38°[100] tilt grain boundaries in (Fe-12 at. % Si)-Zn alloy in the vicinity of the A2-B2 bulk ordering in Fe-12 at. % Si alloy, Acta metal, mater. 39, 3091–3098.

    Article  CAS  Google Scholar 

  26. Straumal, B.B., Noskovich, O.I., Semenov, V.N., Shvindlerman, L.S., Gust, W., and Predel, B. (1992) Premelting transition on 38°[100] tilt grain boundaries in (Fe-12 at. % Si)-Zn alloys, Acta metall. mater. 40, 795–801.

    Article  CAS  Google Scholar 

  27. Straumal, B., Rabkin, E., Lojkowski, W., Gust, W., and Shvindlerman, L.S. (1997) Pressure influence on the grain boundary wetting phase transition in Fe-Si alloys, Acta mater. 45, 1931–1940.

    Article  CAS  Google Scholar 

  28. Rabkin, E., Weygand, D., Straumal, B., Semenov, V., Gust, W., and Brechet, Y. (1996) Liquid film migration in a Mo(Ni) bicrystal, Phil. Mag. Lett. 73, 187–193.

    Article  CAS  Google Scholar 

  29. Glebovsky, V.G., Straumal, B.B., Semenov, V.N., Sursaeva, V.G., and Gust, W. (1994) Grain boundary penetration of a Ni-rich melt in tungsten polycrystals, High Temp. Mater. Proc. 13, 67–73.

    Google Scholar 

  30. Flemings, M.C. (1991) Behavior of metal alloys in the semisolid state, Metall. Trans. A 22, 957–981.

    Article  Google Scholar 

  31. Kumar, P., Martin. C.L., and Brown, S. (1993) Shear strain rate thickening flow behaviour of semisolid slurries, Metall. Trans. A 24, 1107–1116.

    Article  Google Scholar 

  32. Chen, CP. and Tsao, C.-Y.A. (1997) Semi-solid deformation of non-dendritic structures.1. Phenomenological behavior, Acta mater. 45, 1955–1968.

    Article  CAS  Google Scholar 

  33. Roth, M.C, Weatherly, G.C, and Miller, W.A. (1980) The temperature dependence of the mechanical properties of aluminum alloys containing low-melting-point inclusions, Acta metall. 28, 841–853.

    Article  CAS  Google Scholar 

  34. Vaandrager, B.L. and Pharr, G.M. (1989) Compressive creep of copper containing a liquid bismuth intergranular phase, Acta metall. 37, 1057–1066.

    Article  CAS  Google Scholar 

  35. Baudelet, B., Dang, M.C. and, Bordeaux, F. (1995) Mechanical behaviour of an aluminium alloy with fusible grain boundaries, Scripta Metall. Mater. 32, 707–712.

    Article  Google Scholar 

  36. Iwasaki, H., Mori, T., Mabuchi, M., and Higashi, K. (1998) Shear deformation behavior of Al-5% Mg in a semi-solid state, Acta mater. 46, 6351–6360.

    Article  CAS  Google Scholar 

  37. Pharr, G.M., Godavarti, P.S., and Vaandrager, B.L. (1989) Effects of wetting on the compression creepbehavior of metals containing low melting intergarnular phases, J. Mater. Sci. 24, 784–792.

    Article  CAS  Google Scholar 

  38. Cahn, J.W. (1982) Transitions and phase equilibria among grain boundary structures, J. Phys.Colloq. 43-C6, 199–213.

    Google Scholar 

  39. Chang, L.-S., Rabkin, E., Straumal, B.B., Baretzky, B., and Gust, W. (1999) Thermodynamic aspects of the grain boundary segregation in Cu(Bi) alloys, Acta mater. 47, 4041–4046.

    Article  CAS  Google Scholar 

  40. Straumal, B., Sluchanko, N.E., and Gust, W. (2001) Influence of the grain boundary phase transitions on the properties of Cu-Bi polycrystals, Def. Diff. Forum 188-190, 185–194.

    Article  CAS  Google Scholar 

  41. Scholhammer, J., Baretzky, B., Gust, W., Mittemeijer, E., and Straumal, B. (2001) Grain boundary grooving as an indicator of grain boundary phase transformations, Interf. Sci. 9, 43–53.

    Article  CAS  Google Scholar 

  42. Higashi, K., Tanimura, S., and Ito, T. (1990) Superplastic behaviour at high-strain rates in a particulate 6061 aluminium composites, MRS Proc. 196, 385–390.

    Article  CAS  Google Scholar 

  43. Imai, T., Mabuchi, M., Tozawa, Y., and Yamada, M. (1990) Superplasticity in beta-silicon nitride whisker reinforced 2124 aluminum composite, J. Mater. Sci. Lett. 2, 255–257.

    Article  Google Scholar 

  44. Mabuchi, M. and Imai, T. (1990) Superplasticity of Si3N whisker reinforced 6061 aluminum at high strain rate, J. Mater. Sci. Lett. 9, 761–762.

    Article  CAS  Google Scholar 

  45. Nieh, T.G., Henshall, C.A., and Wadsworth, J. (1984) Superplasticity at high strain rates in a SiC whisker reinforced Al alloy, Scripta Metall. 18, 1405–1408.

    Article  CAS  Google Scholar 

  46. Mabuchi, M., Higashi, K., Okada, Y., Tanimura, S., Imai, T., and Kubo, K. (1991) Superplastic behaviour at high-strain rates in a particulate Si3N4 6061 aluminium composite, Scripta Metall. 25, 2003.

    Article  CAS  Google Scholar 

  47. Nieh, T.G., Gilman, P.S., and Wadsworth, J. (1985) Extended ductility at high strain rates in a mechanically alloyed aluminum alloy, Scripta Metall. 19, 1375–1378.

    Article  CAS  Google Scholar 

  48. Bieler, T.R., Nieh, T.G., Wadsworth, J., and Mukherjee, A.K. (1988) Superplastic-like behaviour at high strain rates in mechanically alloyed aluminum, Scripta Metall. 22, 81–86.

    Article  CAS  Google Scholar 

  49. Higashi, K., Okada, Y., Mukai, T., and Tanimura, S. (1991) Positive exponent strain-rate superplasticity in mechanically alloyed aluminum IN9021, Scripta Metall. 25, 2053–2057.

    Article  CAS  Google Scholar 

  50. Takayama, Y., Tozawa, T., and Kato, H. (1999) Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy, Acta mater. 47, 1263–1270.

    Article  CAS  Google Scholar 

  51. Higashi, K., Nieh, T.G., Mabuchi, M., and Wadsworth, J. (1995) Effect of liquid phases on the tensile elongation of superplastic aluminum alloys and composites, Scripta metall. mater. 32, 1079–1084.

    Article  Google Scholar 

  52. Apykhtina, I., Bokstein, B., Khusnutdinova, A., Peteline, A., and Rakov, S. (2001) Kinetics of diffusionc ontrolled grooving in solid-liquid systems, Def. Diff. Forum 194-199, 1331–1336.

    Article  CAS  Google Scholar 

  53. Imai, T., Mabuchi, M., Tozawa, Y., Murase, Y., and Kusul, J. (1990) in R.B. Bhagat. et al. (eds.), Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior, TMS-AIME, Warrendale, Pennsylvania, pp. 235–239.

    Google Scholar 

  54. Mabuchi, M., Higashi, K., Imai, T., and Kubo, K. (1991) Superplastic-like behavior in as-extruded Al-Zn-Mg alloy matrix composites reinforced with Si3N4 whiskers, Scripta Metall. 25, 1675–1680.

    Article  CAS  Google Scholar 

  55. Furushiro, N., Hori, S., and Miyake, Y. (1991) in S. Hori et al., (eds.) Proc. Int. Conf. Superplast. Adv. Mats (ICSAM-91), Jap. Soc. Res. Superplast, Tokyo, pp. 557–562.

    Google Scholar 

  56. Mabuchi, M., Higashi, K., and Langdon, T. (1994) An investigation of the role of a liquid-phase in Al-Cu-Mg metal-matrix composites exhibiting high-strain rate suparplasticity, Acta metall mater. 42, 1739–1745.

    Article  CAS  Google Scholar 

  57. Mabuchi, M., Higashi, K., Wada, S., and Tanimura, S. (1992) Superplastic behavior in as-extruded Al-Cu-Mg alloy matrix composite reinforced with 20 vol. % Si3N4 partciculates, Scripta Metall. 26, 1269–1274.

    Article  CAS  Google Scholar 

  58. Nieh, T.G. and Wadsworth, J. (1993) Scripta Metall. 28, 1119.

    Article  CAS  Google Scholar 

  59. Mabuchi, M., Higashi, K., Inoue, K., and Tanimura, S. (1992) Experimental investigation of superplastic behavior in a 20 vol. % Si3N4P/5052 aluminium composite, Scripta Metall. 26, 1839.

    Article  CAS  Google Scholar 

  60. Koike, J., Mabuchi, M., and Higashi, K. (1995) In-situ observation of partial melting in superplastic aluminium-alloy composites at high-temparatures, Acta metall. mater. 43, 199–206.

    CAS  Google Scholar 

  61. Mabuchi, M., Higashi, K., Okada, Y., Tanimura, S., Imai, T., and Kubo, K. (1991) Very high strain-rate superplasticity in a particulate Si3N4/6061 aluminium composite, Scripta Metall. 25, 2517–2522.

    Article  CAS  Google Scholar 

  62. Hikosaka, T., Imai, T., Nieh, T.G., and Wadsworth, J. (1994) High-strain rate superplasticity of a SiC particulate-reinforced aluminium alloy composite by a vortex method, Scripta Metall. 31, 1181–1186.

    Article  CAS  Google Scholar 

  63. Grishaber, R.B., Mishra, R.S., and Mukherjee, A.K. (1996) Effect of testing environment on intergranular microsuperplasticity in an aluminum MMC, Mat. Sci. & Eng. A 220, 78–84.

    Article  Google Scholar 

  64. Nieh, T.G., Lesuer, D.R., and Syn, C.K. (1995) Tensile and fatigue properties of a 25 vol. % SiC SIC particulate-reinforced 6090-Al composite at 300°C, Scripta Metall. Mater. 32, 707–712.

    Article  CAS  Google Scholar 

  65. Iribarren, M.J., Aguero, O.E., and Dyment, F. (2001) Co-diffusion along the alph/beta interphase boundaries of a Zr-2.5% Nb alloy, Def. Diff Forum. 194-199, 1211–1216.

    Article  CAS  Google Scholar 

  66. Geguzin, Ya.E. (1984) Physics of Sintering, 2nd edition. Nauka, Moscow (in Russian).

    Google Scholar 

  67. Eremenko, V.N., Naidich, Yu.V., and Lavrinenko, I.A. (1968) Sintering in the Presence of Liquid Phase, Naukova dumka, Kiev (in Russian).

    Google Scholar 

  68. Panichkina, V.V., Sirotjuk, M.M., and Skorokhod, V.V. (1982) Liquid-phase sintering of higly disperced W-Cu mixtures, Poroshk. Metall. 6, 21 (in Russian).

    Google Scholar 

  69. Skorokhod, V.V., Panichkina, V.V., and Prokushev, N.K. (1986) Microstructural inhomogeneity and localization of densification during liquid-phase sintering of W-Cu powder mixtures Poroshk. Metall. 8, 14 (in Russian).

    Google Scholar 

  70. Skorokhod, V.V., Solonin, Yu.M., Filippov, N.I., and Poshin, A.N. (1983) Sintering of W-Cu mixtures Poroshk. Metall. 9, 9 (in Russian).

    Google Scholar 

  71. Huppmann, W.J. and Riegger, H. (1975) Modeling of rearrangement processes in liquid phase sintering, Acta metall. 23, 965–971.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Straumal, B.B. (2003). The Influence of the Grain Boundary Phase Transitions on the Properties of Nanostructured Materials. In: Tsakalakos, T., Ovid’ko, I.A., Vasudevan, A.K. (eds) Nanostructures: Synthesis, Functional Properties and Applications. NATO Science Series, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1019-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1019-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1753-7

  • Online ISBN: 978-94-007-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics