Skip to main content

Dissipative Particle Dynamics and Other Fluid Particle Models

Nanoscale Effects in Fluid Systems

  • Chapter
Micromechanics and Nanoscale Effects

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 10))

Abstract

Dissipative Particle Dynamics (DPD) is a particle model that allows to simulate complex fluids at mesoscopic scales. Since its introduction a decade ago it has been applied to a large variety of different complex fluid systems. At the same time, generalizations of the model have been introduced in order to refine the concept of dissipative particle. Here, I offer my personal view about the status of DPD as a model for simulating complex fluids, review part of the literature on applications, and sketch some lines for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett., 19, 155 (1992).

    Article  Google Scholar 

  2. P. Espanol and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett., 30, 191 (1995).

    Article  Google Scholar 

  3. P. Espanol. Hydrodynamics for dissipative particle dynamics. Phys. Rev. E, 52, 1734 (1995).

    Article  Google Scholar 

  4. C. Marsh, G. Backx, and M.H. Ernst. Fokker-planck-boltzmann equation for dissipative particle dynamic. Europhys. Lett, 38, 411 (1997). C. Marsh, G. Backx, and M.H. Ernst. Static and dynamic properties of dissipative particle dynamics. Phys. Rev. E, 56, 1976 (1997). M. Ripoll, P. Espanol, and M. H. Ernst. Dissipative particle dynamics with energy conservation: Heat conduction. Int. J. of Mod. Phys. C, 9, 1329 (1998). G. T. Evans. Dissipative particle dynamics: Transport coefficients. J. Chem. Phys, 110, 1338 (1999). A. J. Masters and P. B. Warren. Kinetic theory for dissipative particle dynamics: The importance of collisions. Europhys. Lett., 48, 1 (1999). M. Ripoll, M. H. Ernst, and P. Espanol. Large scale and mesoscopic hydrodynamic for dissipative particle dynamics. J. Chem. Phys, 115, 7271 (2001).

    Google Scholar 

  5. R. D. Groot and P. B. Warren. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys, 107, 4423 (1997).

    Google Scholar 

  6. M. Serrano and P. Espanol. Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E, 65:46115 (2001).

    Article  Google Scholar 

  7. P. Espanol and M. Revenga. Smoothed Dissipative Particle Dynamics, preprint.

    Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, (Pergamon Press, 1959).

    Google Scholar 

  9. S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (North Holland Publishing Company, Amsterdam, 1964).

    Google Scholar 

  10. M. Grmela and H. C. Ottinger. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E, 56, 6620 (1997). H.C. Ottinger and M. Grmela. Dynamics and thermodynamics of complex fluids. II. Ilustrations of a general formalism, Phys. Rev. E, 56, 6633 (1997).

    Google Scholar 

  11. H. C. Ottinger. General Projection operator formalism for the dynamics and thermodynamics of complex fluids, Phys. Rev. E, 57, 1416 (1998).

    Article  Google Scholar 

  12. M. Serrano, G. de Fabritiis, P. Espanol, Eirik Flekkoy and P.V. Coveney. Mesoscopic dynamics of Voronoi fluid particles, to appear in J. Phys. A: Math. Gen. (2002).

    Google Scholar 

  13. L.B. Lucy. A numerical testing of the fission hypothesis, Astron. J. 82, 1013 (1977).

    Article  Google Scholar 

  14. J.J. Monaghan. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543 (1992).

    Google Scholar 

  15. H. Takeda, S.M. Miyama, and M. Sekiya, Prog. Theor. Phys.,92, Numerical simulation of viscous flow by Smoothed Particle Hydrodynamics. 939 (1994).

    Google Scholar 

  16. H.A. Posch, W.G. Hoover, and O. Kum. Steady state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Phys. Rev. E, 52, 1711 (1995). O. Kum, W.G. Hoover, and H.A. Posch. Viscous conducting fows with smooth- particle applied mechanics. Phys. Rev. E, 52, 4899 (1995).

    Google Scholar 

  17. S.J. Watkins, A.S. Bhattal, N. Francis, J.A. Turner, A.P. Whitworth. A new prescription for viscosity in Smoothed Particle Hydrodynamics. Astron. Astrophys. Suppl. Ser., 119, 177 (1996).

    Google Scholar 

  18. P.W. Cleary and J.J. Monaghan. Conduction modelling using Smoothed Particle Hydrodynamics. J. Comp. Phys., 148, 227 (1999).

    Article  Google Scholar 

  19. P. Espanol. Fluid particle model. Phys. Rev. E, 57, 2930 (1998). P. Espanol. Fluid particle dynamics: a syntehsis of dissipative particle dynamics and smoothed particle dynamics. Europhys. Lett., 39, 606 (1997).

    Google Scholar 

  20. J. Bonet-Avalos and A. D. Mackie. Dissipative particle dynamics with energy conservation. Europhys. Lett., 40, 141 (1997). J. Bonet-Avalos and A. D. Mackie. Dynamic and transport properties of dissipative particle dynamics with energy conservation. J. Chem. Phys, 11, 5267 (1999).

    Google Scholar 

  21. P. Espanol. Dissipative particle dynamics with energy conservation. Europhys. Lett., 40, 631 (1997). M. Ripoll, P. Espanol, and M. H. Ernst. Dissipative particle dynamics with energy conservation: Heat conduction. Int. J. of Mod. Phys. C, 9, 1329 (1998).

    Google Scholar 

  22. I. Pagonabarraga and D. Frenkel. Dissipative particle dynamics for interacting systems. J. Chem. Phys, 115, 5015 (2001).

    Google Scholar 

  23. P. Espanol, M. Serrano, and H. C. Ottinger. Thermodinamically admisible form for discrete hydrodynamics. Phys. Rev. Lett., 83:4552, 1999.

    Article  Google Scholar 

  24. The input values of the transport coefficients are realized only in the long wavelength limit, of course.

    Google Scholar 

  25. E. G. Flekkoy and P. V. Coveney. From molecular to dissipative particle dynamics. Phys. Rev. Lett., 83 1775 (1999). E. G. Flekkoy, P. V. Coveney, and G. D. Fabritiis. Foundations of dissipative particle dynamics. Phys. Rev. E, 62, 2140 (2000).

    Google Scholar 

  26. P.W. Randles and L.D. Libersky. Smoothed Particle Hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Engrg. 139, 375 (1996).

    Article  Google Scholar 

  27. P. Warren. Disspative particle dynamics. Curr. Opinion Colloid Interface Sci., 3, 620 (1998).

    Article  Google Scholar 

  28. J. M. V. A. Koelman and P. J. Hoogerbrugge. Dynamic simulations of hard-sphere suspensions under steady state shear. Europhys. Lett., 21, 363 (1993).

    Article  Google Scholar 

  29. E. S. Boek, P. V. Coveney, and H.N.W. Lekkerkerker. Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J. Phys.: Condens. Matter, 8, 9509 (1996). E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys. Rev. E, 55, 3124 (1997). E. S. Boek and P. van der Schoot. Resolution effects in dissipative particle dynamics simulations. Int. J. of Mod. Phys. C, 9, 1307 (1998).

    Google Scholar 

  30. W. Dzwinel and D. A. Yuen. A two-level, discrete-particle approach for simulating ordered colloidal structures. Journal of Colloid and Interface Science, 225, 179 (2000).

    Article  Google Scholar 

  31. W. Dzwinel and D. A. Yuen. A two-level, discrete-particle approach for large-scale simulation of colloidal aggregates. Int. J. of Mod. Phys. C, 11, 1037 (2000).

    Google Scholar 

  32. M. Whittle and E. Dickinson, On simulating colloids by dissipative particle dynamics: Issues and complications, J. Colloid and Interface Science. 242, 106 (2001)

    Article  Google Scholar 

  33. J.R. Melrose, J.H. van Vliet, and R.C. Ball. Continuous shear thickening and colloid surfaces. Phys. Rev. Lett., 77, 4660 (1996).

    Article  Google Scholar 

  34. J.X. Zhu, D.J. Durian, J. Muller, D.A. Weitz, and D.J. Pine, Phys. Rev. Lett., 68, 2559 (1992). M. Kao, A. Yodh, and D.J. Pine, Phys. Rev. Lett., 70, 242 (1993).

    Google Scholar 

  35. A. G. Schlijper, P. J. Hoogerbrugge, and C. W. Manke. Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. J. Rheol., 39, 567 (1995).

    Article  Google Scholar 

  36. Y. Kong, C. W. Manke, W. G. Madden, and A. G. Schlijper. Effect of solvent qualityon the conformation and relaxation of polymers via dissipative particle dynamics. J. Chem. Phys, 107, 592 (1997).

    Google Scholar 

  37. N. A. Spenley. Scaling laws for polymers in dissipative particle dynamics. Europhys. Lett., 49, 534 (2000).

    Article  Google Scholar 

  38. Y. Kong, C. W. Manke, W. G. Madden, and A. G. Schlijper. Modeling the rheology of polymer solutions by dissipative particle dynamics. Tribology Letters, 3, 133 (1997).

    Article  Google Scholar 

  39. A. G. Schlijper, C. W. Manke, W. D. Madden, and Y. Kong. Computer simulation of non-newtonian fluid rheology. Int. J. of Mod. Phys. C, 8, 919 (1997).

    Article  Google Scholar 

  40. Y. Kong, C. W. Manke, W. G. Madden, and A. G. Schlijper. Simulation of a confined polymer on solution using the dissipative particle dynamics method. Int. J. Thermophys., 15, 1093 (1994).

    Article  Google Scholar 

  41. J. B. Gibson, K. Chen, and S. Chynoweth. Simulation of particle adsoption onto a polymer-coated using the disspative particle dynamics method. Journal of Colloid and Interface Science, 206, 464 (1998). J. B. Gibson, K. Zhang, K. Chen, S. Chynoweth, and C. W. Manke. Simulation of colloid-polymer systems using disspative particle dynamics, (Preprint).1999.

    Google Scholar 

  42. P. Espanol. Dissipative particle dynamics for a harmonic chain: A first-principles derivation. Phys. Rev. E, 53, 1572 (1996).

    Article  Google Scholar 

  43. A. Uhlherr and D.N. Theodorou, Hierarchical simulation approach to structure and dynamics of polymers. Current Opinion in Solid State & Materials Science, 3, 544 (1998).

    Google Scholar 

  44. W. Tschop, K. Kremer, J. Batoulis, T. Burger, and O. Hahn, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polymer, 49, 61 (1998).

    Article  Google Scholar 

  45. H. Meyer, O. Biermann, R. Faller, D. Reith, and F. Muller-Plathe. Coarse graining of nonbonded inter-particle potentials using automatic simplex optimization to fit structural properties. J. Chem. Phys. 113, 6264 (2000).

    Google Scholar 

  46. R.L.C. Akkermans and W.J. Briels. Coarse-grained interactions in polymer melts: A variational approach. J. Chem. Phys., 115, 6210 (2001).

    Google Scholar 

  47. R.L.C. Akkermans and W.J. Briels. Coarse-grained dynamics of one chain in a polymer melt. J. Chem. Phys., 113, 6409 (2000).

    Google Scholar 

  48. P. V. Coveney and K. Novik. Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics. Phys. Rev. E, 54, 5134 (1996). P.V. Coveney and K. Novik. Erratum: Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics. Phys. Rev. E, 55, 4831 (1997). K.E. Novik and P.V. Coveney. Finite-difference methods for simulation models incorporating nonconservative forces.J. Chem. Phys., 109, 7667 (1998).

    Google Scholar 

  49. K. E. Novik and P. V. Coveney. Using dissipative particle dynamics to model binary immiscible fluids., Int. J. Mod. Phys. C, 8, 909 (1997).

    Article  Google Scholar 

  50. K. E. Novik and P. V. Coveney. Spinodal decomposition off of-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions. Phys. Rev. E, 61, 435 (2000).

    Article  Google Scholar 

  51. S. I. Jury, P. Bladon, S. Krishna, and M. E. Cates. Test of dynamical scaling in three-dimensional spinodal decomposition. Phys. Rev. E, 59 R2535, 1999.

    Article  Google Scholar 

  52. V.M. Kendon, J-C. Desplat, P. Bladon, and M.E. Cates Phys. Rev. Lett., 83, 576 (1999).

    Google Scholar 

  53. M. E. Cates, V. M. Kendon, P. Bladon, J-C. Desplat. Inertia, coarsening and fluid motion in binary mixtures, Faraday Disc. Roy. Chem. Soc., 112, 1 (1999).

    Google Scholar 

  54. S. M. Willemsen, T. J. H. Vlugt, H. C. J. Hoefsloot, and B. Smit. Combining dissipative particle dynamics and monte carlo techniques. J. Comp. Phys., 147, 507 (1998).

    Article  Google Scholar 

  55. C. M. Wijmans, B. Smit, and R. D. Groot. Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials. J.Chem. Phys, 114, 7644 (2001).

    Google Scholar 

  56. R. D. Groot, T. J. Madden. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys, 108, 8713 (1997).

    Google Scholar 

  57. R. D. Groot, T. J. Madden, and D. J. Tildesley. On the role of hydrodynamic interactions in block copolymer microphase separation. J. Chem. Phys, 110, 9739 (1999).

    Google Scholar 

  58. S. Jury, P. Bladon, M. Cates, S. Krishna, M. Hagen, N. Ruddock, and P. Warren. Simulation of amphiphilic mesophases using dissipative particle dynamics. Phys. Chem. Chem. Phys. 1, 2051 (1999).

    Article  Google Scholar 

  59. M. Venturoli and B. Smit. Simulating the self-assembly of model membranes. Phys. Chem. Comm., 10 (1999).

    Google Scholar 

  60. J.L. Jones, M. Lal, N. Ruddock, and N. A. Spenley. Dynamics of a drop at a liquid/solid interface in simple shear fields: A mesoscopic simulation study. Faraday Discussions, 112, 129 (1999).

    Article  Google Scholar 

  61. P. Malfreyt, D.J. Tildesley, Dissipative particle dynamics of grafted polymer chains between two walls. Langmuir, 16, 4732 (2000).

    Article  Google Scholar 

  62. J.A. Elliott and A.H. Windle. A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. J. Chem. Phys. 113, 10367 (2000).

    Google Scholar 

  63. B.I.M. ten Bosch, On an extension of Dissipative Particle Dynamics for viscoelastic flow modelling, J. Non-Newtonian Fluid Mech. 83, 231 (1999).

    Article  Google Scholar 

  64. P. Espanol and E.G. Flekkoy, Smoothed dissipative particle dynamics for viscoelastic flows, preprint (2002).

    Google Scholar 

  65. L. E. Reichl, A modern course in statistical physics (Univ. of Texas Press, Austin 1980)

    Google Scholar 

  66. P. Espanol, Fluid particle model for chemical reactions, preprint (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Espanol, P. (2004). Dissipative Particle Dynamics and Other Fluid Particle Models. In: Harik, V.M., Luo, LS. (eds) Micromechanics and Nanoscale Effects. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1013-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1013-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3767-9

  • Online ISBN: 978-94-007-1013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics