Skip to main content

Experimental Mechanics of MEMS and Thin Films

Direct and Local Sub-Micron Strain Measurements

  • Chapter
Book cover Micromechanics and Nanoscale Effects

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 10))

Abstract

The novel thin film materials manufactured for MEMS sensors, actuators, and multifunctional coatings demand the development of novel methodologies for the characterization of their anisotropic mechanical properties, which dominate as submicron sized devices become technologically feasible. While the limitations of continuum mechanics are experimentally still unexplored, material anisotropy and scale-dependence of deformations require a combined experimental, analytical, and numerical approach with the development of novel instrumentation being at the forefront of this effort. The local character of many phenomena at the nanoscale imposes the challenge to employ methodologies that can specifically and directly address the scale limitations and requirements. This limits our current inventory to techniques and methodologies that provide resolution beyond the optical diffraction limit and include either probe or electron microscopes. The high resolution imaging capabilities of these tools provide the basis for new developments but their ability to furnish quantitative information remains largely unexplored. While such instruments may replace macroscopic cameras employed to conduct full- field measurements, the large-scale test apparatuses need to be also adapted to the new scale demands. These direct approaches and their potential to succeed in the nanoscale mechanics arena are discussed in this chapter. The methodologies of global (average) property measurements and local, nanometer-level, measurements of local constitutive properties are discussed with reference to typical MEMS materials. Special emphasis is given to the full-field methodology with an update to the most recent developments. Finally, the scale-related failure properties of brittle MEMS materials and their implication to thin film material and device design and implementation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Chasiotis, W.G. Knauss, The Influence of Fabrication Governed Surface Conditions on the Mechanical Strength of Thin Film Materials, Proceedings of the Materials Research Society 657, pp. EE2.2.1–EE2.2.6, 2001.

    Google Scholar 

  2. I. Chasiotis, W.G. Knauss, The Mechanical Strength of Polysilicon Films: 1. The Influence of Fabrication Governed Surface Conditions, Journal of the Mechanics and Physics of Solids 51 (8), pp. 1533–1550, 2003.

    Article  Google Scholar 

  3. S.M. Allameh, B. Gally, S. Brown, W.O. Soboyejo, Surface Topology and Fatigue in Si MEMS Structures, Mechanical Properties of Structural Films, STP 1413, C. Muhlstein and S. Brown, Eds., American Society for Testing and Materials, West Conshohocken, PA, June 2001.

    Google Scholar 

  4. D.T. Read, J.W. Dally, New method for measuring the strength and ductility of thin films, Journal of Materials Research, 1993, 8 (7), 1542–1549.

    Article  Google Scholar 

  5. [5] W.N. Sharpe Jr., B. Yuan, R.L. Edwards, A new technique for measuring the mechanical properties of thin films, Journal of Microelectromechanical Systems, 6 (3), pp. 193–199, 1997.

    Article  Google Scholar 

  6. J.C. Fox, R.L. Edwards, W.N. Sharpe Jr., Thin film gage markers for laser-based strain measurement on MEMS materials, Experimental Techniques, pp. 28–30, 1998.

    Google Scholar 

  7. W.N. Sharpe, K.R. Vaidyanathan, B. Yuan, R.L. Edwards, New technique for measuring Poisson's ratio of MEMS materials, Materials for Mechanical and Optical Microsystems, Materials Research Society Symposium Proceedings 444, Materials Research Society, Pittsburgh, PA, USA, pp. 185–190, 1997.

    Google Scholar 

  8. [8] W.N. Sharpe Jr., K.M. Jackson, K.J. Hemker and Z. Xie, Effect of specimen size on Young’s modulus and fracture strength of polysilicon, Journal of Microelectromechanical Systems 10 (3), pp. 317–326, 2001.

    Google Scholar 

  9. T. Tsuchiya, O. Tabata, J. Sakata and Y. Taga, Tensile testing of polycrystalline silicon thin films using electrostatic force grip, Transactions of IEEE of Japan 116-E (10), pp. 441–446, 1996.

    Google Scholar 

  10. M.A. Haque, M.T.A. Saif, Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension, Scripta Materialia 47 (12), pp. 863–867, 2002.

    Article  Google Scholar 

  11. I. Chasiotis, W.G. Knauss, Investigation of Thin Film Mechanical Properties by Probe Microscopy, Proceedings of International Society for Optical Eng. (SPIE) 3512, pp. 66–75, Santa Clara, CA, 1998.

    Google Scholar 

  12. I. Chasiotis, W.G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Experimental Mechanics 42 (1), pp. 51–57, 2002.

    Article  Google Scholar 

  13. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil, Determination of Displacements using an Improved Digital Image Correlation Method, Image Vision Computing, 1 (3), pp. 133–139, 1983.

    Article  Google Scholar 

  14. G. Vendroux, W.G. Knauss, Submicron Deformation Field Measurements II: Improved Digital Image Correlation, Experimental Mechanics, 38 (2), pp. 86–92, 1998.

    Article  Google Scholar 

  15. H. Lu, P.D. Cary, Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient, Experimental Mechanics 40 (4), pp. 393–400, 2000.

    Article  Google Scholar 

  16. I. Chasiotis, W.G. Knauss, Experimentation at the Micron and Submicron Scale, Encyclopedia of Comprehensive Structural Integrity Vol. 8. Interfacial and Nanoscale Failure. Volume Editors: W. Gerberich and W. Yang, Elsevier Science, pp. 41–87, 2003.

    Google Scholar 

  17. I. Chasiotis, W.G. Knauss, The Mechanical Strength of Polysilicon Films: 2. Size Effects Associated with Elliptical and Circular Perforations, Journal of the Mechanics and Physics of Solids 51 (8), pp. 1551–1572, 2003.

    Article  Google Scholar 

  18. W.G. Knauss, I. Chasiotis, Y. Huang, Mechanical Measurements at the Micron and Nanometer Scales, Mechanics of Materials 35 (3-6), pp. 217–231, 2003.

    Article  Google Scholar 

  19. W.N. Reynolds, Physical Properties of Graphite, Amsterdam, Elsevier Pub. Co., 1968.

    Google Scholar 

  20. I. Chasiotis, S. Cho, T.A. Friedman, J. Sullivan, Mechanical Properties of Tetrahedral Amorphous Diamond-like Carbon (ta-C) MEMS, Proceedings of the Annual Conference of the Society for Experimental Mechanics, pp. 170–175, 2003.

    Google Scholar 

  21. I. Chasiotis, W.G. Knauss, Size Effects Determined From Tensile Tests of Perforated MEMS Scale Specimens, Proceedings of the Materials Research Society 687, pp. B2.4.1- B2.4.6, 2002.

    Google Scholar 

  22. J.F. C¨¢rdenas-Garc¨ªa, S. Cho, I. Chasiotis, Determination of Elastic Properties from Non-linear MEMS Geometries, Proceedings of the Annual Conference of the Society for Experimental Mechanics, 2003.

    Google Scholar 

  23. Y.M. Xing, W. Yang, Measuring crack tip deformation with nanoscopic resolution, 10th International Conference on Fracture, Hawaii, USA, 2001.

    Google Scholar 

  24. P. Shrotriya, S. Allameh, A. Butterwick, S. Brown, W.O Soboyejo, Mechanisms of fatigue in polysilicon MEMS structures, Materials Research Society Symposium Proceedings 687, pp 29–34, 2002.

    Google Scholar 

  25. O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membranes, Sensors and Actuators A 20, 135–141, 1989.

    Article  Google Scholar 

  26. J.J. Vlassak, W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films, Journal of Materials Research 7 (12), pp. 3242–3249, 1992.

    Article  Google Scholar 

  27. D. Maier-Schneider, J. Maibach, E. Obermeier, D. Schneider, Variations in Young's modulus, intrinsic stress of LPCVD polysilicon due to high-temperature annealing, Journal of Micromechanics and Microengineering 5, pp. 121–124, 1995.

    Article  Google Scholar 

  28. D. Maier-Schneider, J. Maibach, E. Obermeier, A new analytical solution for the load- deflection of square membranes, Journal of Microelectromechanical Systems 4 (4), pp. 238–241, 1995.

    Article  Google Scholar 

  29. S.P. Timoshenko, Theory of Plates and Shells, 2nd Edition, McGraw Hill, pp. 124, 210, 1959.

    Google Scholar 

  30. S. Jayaraman, R.L. Edwards, K.J. Hemker, Relating mechanical testing and microstructural features of polysilicon thin films, Journal of Materials Research 14 (3), pp. 688–697, 1999.

    Article  Google Scholar 

  31. C.T. Loy, S.C. Pradhan, T.Y. Ng, K.Y. Lam, A series solution approach to an analytical load-deflection relation for the measurement of mechanical properties of thin films, Journal of Micromechanics and Microengineering, 9 (4), pp. 341–344, 1999.

    Article  Google Scholar 

  32. J.Y. Pan, P. Lin, F. Maseeh, S.D. Senturia, Verification of FEM analysis of load- deflection methods for measuring mechanical properties of thin films, Technical Digest IEEE Solid State Sensors and Actuators Workshop, Hilton Head Island, SC, pp.70–73, 1990.

    Google Scholar 

  33. M.K. Small, W.D. Nix, Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films, Journal of Materials Research 7 (6), pp. 1553–1563, 1992.

    Article  Google Scholar 

  34. G.L. Pearson, W.T. Read, W.L. Feldman, Deformation and fracture of small silicon crystals, Acta Metallurgica 5, pp. 181–191, 1957.

    Article  Google Scholar 

  35. S. Johansson, J. Schweitz, L. Tenerz, J. Tiren, Fracture testing of silicon microelements in situ in a scanning electron microscope, Journal of Applied Physics 63 (10), pp. 4799–4803, 1988.

    Article  Google Scholar 

  36. M. Biebl, T. Scheiter, C. Hierold, H. Philipsborn, H. Klose, Micromechanics compatible with an 0.8 µm CMOS process, Sensors and Actuators A, 46-47, pp. 593–597, 1995.

    Google Scholar 

  37. B.D. Jensen, M.P. de Boer, N.D. Masters, F. Bitsie, D.A. LaVan, Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS, Journal of Microelectromechanical Systems 10 (3), pp. 336–346, 2001.

    Article  Google Scholar 

  38. J. Menc¨ªk and E. Quandt, Determination of elastic modulus of thin films and small specimens using beam bending methods, Journal of Materials Research 14 (5), pp. 2152–2161, 1999.

    Article  Google Scholar 

  39. C. Serre, J.R. Morante, P. Gorostiza, F. Sanz, A. P¨¦rez-Rodr¨ªguez, Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope, Sensors and Actuators A: Physical 67 (1-3), pp. 215–219, 1998.

    Article  Google Scholar 

  40. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3 Edition, McGraw Hill, pp. 46, 1970.

    Google Scholar 

  41. S.P. Timoshenko, Strength of Materials, Part I, 2n edition, D. Van Nostrand Co., New York, pp. 299, 1940.

    Google Scholar 

  42. W.J. O’Donnell, The additional deflection of a cantilever due to the elasticity of the support, Journal of Applied mechanics, 27 (3), pp. 461–464, 1960.

    Article  Google Scholar 

  43. N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendle, Comparison of calibration methods for atomic-force microscopy cantilevers, Nanotechnology 14 (1), pp. 1–6, 2003.

    Article  Google Scholar 

  44. B.D. Jensen, F. Bitsie, M. de Boer, Interferometric measurement for improved understanding of boundary effects in micromachined beams, Proceedings of SPIE ¨C the International Society for Optical Engineering 3875, pp. 61–72, 1999.

    Google Scholar 

  45. J.M. Bustillo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanical systems, Proceedings of the IEEE 86 (8), pp. 1552–1574, 1998.

    Article  Google Scholar 

  46. W.W. Van Arsdell, S.B. Brown, Subcritical crack growth in silicon MEMS, Journal of Microelectromechanical Systems 8 (3), pp. 319–327, 1999.

    Article  Google Scholar 

  47. CL. Muhlstein, S.B. Brown, R.O. Ritchie, High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sensors and Actuators A: Physical 94 (3), pp. 177–188, 2001.

    Article  Google Scholar 

  48. R. Ballarini, R. L. Mullen, A.H. Heuer, The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films, International Journal of Fracture 95, pp. 19–39, 1999.

    Article  Google Scholar 

  49. X.D. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials Characterization 48 (1), pp. 11–36, 2002.

    Article  Google Scholar 

  50. X.D. Li, B. Bhushan, Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Surface Coating Technology 163, pp. 521–526, 2003.

    Article  Google Scholar 

  51. M.T.A. Saif, N.C. MacDonald, Measurements of forces and spring constants of microinstruments, Review of Scientific Instruments 69 (3), pp. 1410–1422, 1998.

    Article  Google Scholar 

  52. E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Materialia 46 (16), pp. 5611 –5626, 1998.

    Article  Google Scholar 

  53. W.N. Sharpe Jr., J.S. Brown, G.C. Johnson, W.G. Knauss, Round-robin tests of modulus and strength of polysilicon, Materials Research Society Symposium Proceedings 518, pp. 57 –65, 1998.

    Article  Google Scholar 

  54. A.J. Hallinan, A review of the Weibull distribution, Journal of Quality Technology 25 (2), pp. 85–93, 1993.

    Google Scholar 

  55. A.A. Griffith, The theory of rupture, Proceedings of the First International Congress for Applied Mechanics, Delft, pp. 55 –63, 1924.

    Google Scholar 

  56. A.A. Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society A 221, pp. 163 –198, 1921.

    Article  Google Scholar 

  57. S. Greek, F. Ericson, S. Johansson, J. Schweitz, In situ tensile strength measurement and Weibull analysis of thick film and thin film micromachined polysilicon structures, Thin Solid Films 292, pp. 247 –254, 1997.

    Article  Google Scholar 

  58. T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga, Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films, Journal of Microelectromechanical Systems 7 (1), pp. 106 –113, 1998.

    Article  Google Scholar 

  59. D.A. LaVan, T. Tsuchiya, G. Coles, W.G. Knauss, I. Chasiotis, D. Read, Cross comparison of direct strength testing techniques on polysilicon films, mechanical properties of structural films, ASTM STP 1413, C. Muhlstein and S. B. Brown, Editors, American Society for Testing and Materials, West Conshohocken, PA. 2001.

    Google Scholar 

  60. J.N. Ding, Y.G, Meng, S.Z. Wen, Specimen size effect on mechanical properties of polysilicon microcantilever beams measured by deflection using a nanoindenter, Materials Science and Engineering B 83, pp. 42¨C47, 2001.

    Article  Google Scholar 

  61. T. Namazu, Y. Isono, T. Tanaka, Nano-scale bending test of Si beams for MEMS, in Proceedings IEEE Thirteenth Annual International Conference on MicroElectroMechanical Systems, pp. 205¨C210, 2000.

    Google Scholar 

  62. P.T. Jones, G.C. Johnson, R.T. Howe, Statistical characterization of fracture of brittle MEMS materials, Proceedings of the International Society for Optical Engineering (SPIE) 3880, pp. 20–29, 1999.

    Google Scholar 

  63. T.T. Shih, An evaluation of the probabilistic approach to brittle design, Engineering Fracture Mechanics 13, pp. 257–271, 1980.

    Article  Google Scholar 

  64. J.C.H. Spence, Y.M. Huang, O. Sankey, Lattice trapping and surface reconstruction for silicon cleavage on (111). Ab-initio quantum molecular dynamics calculations, Acta Metallurgica et Materialia 41 (10), pp. 2815–2824, 1993.

    Article  Google Scholar 

  65. R. Perez and P. Gumbsch, An ab initio study of the cleavage anisotropy in silicon, Acta Materialia 48, pp. 4517–4530, 2000.

    Article  Google Scholar 

  66. C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Transactions of the Royal Institution of Naval Architects 60, pp. 219–230, 1913.

    Google Scholar 

  67. H. Neuber, Theory of Notch Stresses, Edwards Bros Inc. 1946.

    Google Scholar 

  68. S.G. Lekhnitskii, S.W. Tsai, T. Cheron, Anisotropic Plates, 2nd edition, Gordon and Breach Science Publishers, pp. 167, 1968.

    Google Scholar 

  69. M. Isida and K. Nakagawa, On the stress gradients in tension and bending of a perforated strip, Proceedings of the Third Japan National Congress for Applied Mechanics, pp. 1–4, 1954.

    Google Scholar 

  70. M. Isida, On the tension of a strip with a central elliptic hole, Transactions of the Japan Society of Mechanical Engineers 21, pp. 514, 1955.

    Article  Google Scholar 

  71. N.N. Nemeth, L.M. Powers, L.A. Janosik, J.P Gyekenyesi, Lifetime reliability evaluation of structural ceramic parts with the CARES/LIFE computer program, Proceedings of the 34th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, April 19-21, 1993, La Jolla, California, pp.1634–1646, 1993.

    Google Scholar 

  72. P.F. Barbara, D. M. Adams, D. B. O’Connor, Characterization of organic thin film materials with near-field scanning optical microscopy (NSOM), Annual Reviews in Materials Science 29, pp. 433–469, 1999.

    Article  Google Scholar 

  73. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (5453), pp. 637–640, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chasiotis, I. (2004). Experimental Mechanics of MEMS and Thin Films. In: Harik, V.M., Luo, LS. (eds) Micromechanics and Nanoscale Effects. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1013-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1013-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3767-9

  • Online ISBN: 978-94-007-1013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics