Skip to main content

Domain Walls, Bloch-Line Vortices and Their Resonances Imaged in Garnet Films Using Cotton-Mouton Magneto-Optics

  • Conference paper
Book cover Magneto-Optical Imaging

Part of the book series: NATO Science Series ((NAII,volume 142))

  • 335 Accesses

Abstract

Microscopic images of domain walls, Bloch-lines, magnetic vortices, and their resonances in iron-garnet films are formed using the magneto-optical Cotton-Mouton effect (CM). Results reported in 1984 which were the first to image Bloch-lines optically, are summarized. In our sample epitaxial garnet film of Eu0.7Tm0.5Ga0.85:YIG, the domain moments lie in the [100] film plane. A pattern created with ion irradiation stabilizes the in-plane domains along fourfold “easy axes” [110]. CM microphotographs of 180 ° Neel walls show that multiple Bloch-line vortices may be present. A single vortex occurs at the intersection of two 90 ° Neél walls. For two 90 ° walls intersecting orthogonally, the motions observed at resonance induced with in-plane rf fields reveal the vortex motion is circular. The frequency of resonance depends on the length of the intersecting walls. Resonances appear at 24, 15.5 and 13 MHz for wall lengths 14, 28 and 35 µm respectively. Slonczewski estimated theoretically that the contribution of the effective areal mass of the 90 ° walls to the resonance frequency is negligible. His model resonances based on restoring forces arising from stray field energy when walls displace from equilibrium, are found in reasonable agreement with the experiment. The circular motion at resonance essentially involves precessions of just those electron spins within the invisibly small vortex-core region, and it confirms experimentally the existence of a Magnus force orthogonal to the velocity of a simple quantized magnetic vortex. The vortex core in our film carries magnetic film-normal flux equal 3% of a flux quantum, ch/2e. Very recently, Park, et al [Phys. Rev. B, vol. 67, 020403(R)] formed MFM images of single vortices isolated in Permalloy nano particles and measured their time-resolved impulse response. We briefly compare the magneto dynamics they observed with our observations in the garnet film when the vortex is part of a wall network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Kryder, TJ. Gallagher, and R.A. Scranton, 1982, J. Appl. Phys. 53, 5810.

    Article  ADS  Google Scholar 

  2. A.P. Malozemoff and J. C. Slonczewski, “Magnetic Domain Walls in Bubble Materials”, 1979, Academic Press, New York.

    Google Scholar 

  3. Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmuller, 2002, Rep. Prog. Phys., 75, 751–788.

    Google Scholar 

  4. B.E. Argyle and E. Terrenzio, 1984, J. Appl. Phys. 55, 2579–2571

    Article  ADS  Google Scholar 

  5. B.E. Argyle, E. Terrenzio, and J.C. Slonczewski, 1984, Phys. Rev. Lett. 53, 190–193.

    Article  ADS  Google Scholar 

  6. B.E. Argyle, J.C. Slonczewski, W. Jantz, J.H. Spreen, and M.H. Kryder, 1982, EEE Trans. Magn. Vol. MAG-18, 1325

    Article  ADS  Google Scholar 

  7. J.P. Park, P. Eames, D.M. Engebretson, J. Berenzovsky and P.A. Crowell,, 2003, Phys. Rev. B, 67, 020403 (R)

    Article  ADS  Google Scholar 

  8. M.H. Kryder and B.E. Argyle, 1982, J. Appl. Phys., 53, 1774

    Google Scholar 

  9. J.F. Dillon, 1983, J. Magn. Magn. Mater., vol. 31-34, 1

    Article  ADS  Google Scholar 

  10. L.M. Dedukh and V.l. Nikitenko, 1970, Sov. Phy. Solid State, 1970, 12, 1400.

    Google Scholar 

  11. U.S. Hikami and T. Tsuneto, 1980, Prog. Theor. Phys., 73, 387.

    Article  ADS  Google Scholar 

  12. D.L. Huber, 1982, J. Appl. Phys. vol. 53, 1899.

    Article  ADS  Google Scholar 

  13. A.A. Thiele, 1973, Phys. Rev. Lett., 30, 230.

    Article  ADS  Google Scholar 

  14. J.C. Slonczewski, 1979, J. Magn. Magn. Mater., 12, 108.

    Article  ADS  Google Scholar 

  15. J.C. Slonczewski, 1984, J. Appl. Phys., 55, 2537.

    Article  ADS  Google Scholar 

  16. R.P. Cowburn, et al., 1999, Phys. Rev. Lett. 83, 1042

    Article  ADS  Google Scholar 

  17. K.L. Metlov and K. Yu. Guzlienko, 2002, J. Magn. Magn. Mater., 242-245, 1015.

    Article  ADS  Google Scholar 

  18. V. Novasad et al., 2002, Phys. Rev. B, 67, 52407.

    Article  Google Scholar 

  19. K. Yu. Guslienko et al., 2002, J. Appl. Phys. 91, 8037

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Argyle, B.E. (2004). Domain Walls, Bloch-Line Vortices and Their Resonances Imaged in Garnet Films Using Cotton-Mouton Magneto-Optics. In: Johansen, T.H., Shantsev, D.V. (eds) Magneto-Optical Imaging. NATO Science Series, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1007-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1007-8_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1998-2

  • Online ISBN: 978-94-007-1007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics