Skip to main content

Effect of Substrate Orientation and Hydrogen Impurities on Flux Penetration in Nb Thin Films

  • Conference paper
Magneto-Optical Imaging

Part of the book series: NATO Science Series ((NAII,volume 142))

  • 333 Accesses

Abstract

Very different kinds of magnetic flux penetration patterns have been reported in the type-II superconductor Nb. Using our advanced magneto-optical setup we investigate the flux penetration in Nb thin films. We find that depending on the sapphire substrate orientation (either A-plane or R-plane) qualitatively different structures are observed. In particular, for the A-plane orientation we find fingering and branching, whereas for R-plane samples a rough but continuous flux front is observed. Since Nb easily accepts hydrogen atoms as interstitial impurities, the influence of static pinning centers on the flux penetration process can be investigated. We find that the flux penetration drastically changes, becoming more irregular. The possibility to add a well- controlled amount of disorder makes NbHx an ideal system to study the influence of quenched noise on roughening phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  2. V. Bujok, P. Br üll, J. Boneberg, S. Herminghaus, and P. Leiderer, Appl. Phys. Lett. 63, 412 (1993).

    Google Scholar 

  3. T. H. Johansen, M. Baziljevich, D. V. Shantsev, P. E. Goa, Y. M. Galperin, W. N. Kang, H. J. Kim, E. M. Choi, M. S. Kim and S. I. Lee, Europhys.Lett. 59, 599 (2002), A. V. Bobyl and D. V. Shantsev, T. H. Johansen, W. N. Kang, H. J. Kim, E. M. Choi, and S. I. Lee, Appl. Phys. Lett. 80, 4588 (2002).

    Article  ADS  Google Scholar 

  4. R. P. Huebener, V.A. Rowe, and R. T. Kampwirth, J. Appl. Phys. 41, 2963 (1970).

    Article  ADS  Google Scholar 

  5. R. Aoki and H. U. Habermeier, Jpn. J. Appl. Phys. 26, 1453 (1987).

    Article  ADS  Google Scholar 

  6. V. A. Rowe, R. P. Huebener, and R. T. Kampwirth, Phys. Stat. Sol. (a) 4, 513 (1971).

    Article  ADS  Google Scholar 

  7. C. A. Duran, P. L. Gammel, R. E. Miller, D. J. Bishop, Phys. Rev. B 52, 75 (1995).

    Article  ADS  Google Scholar 

  8. S. S. James, S. B. Field, J. Scigel and H. Shtrikman, Physica C 332, 445 (2000).

    Article  ADS  Google Scholar 

  9. R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, A. R. Voorwinden, Rev. Sci. Instrum. 72, 2661 (2001).

    Article  ADS  Google Scholar 

  10. L. A. Dorosinskii, M. V. Indenbom, V. I. Nikitenko, Y. A. Ossipyan, A. A. Polyanskii, V. K. Vlasko-Vlasov, Physica C 203, 149 (1992).

    Article  ADS  Google Scholar 

  11. M. S. Welling and R. J. Wijngaarden to be published.

    Google Scholar 

  12. I. Aranson, A. Gurevich, V. Vinokur, Phys. Rev. Lett. 87, 067003 (2001).

    Article  ADS  Google Scholar 

  13. L. Ya. Vinnikov, O. V. Zharikov, Ch. V. Kopetskii, and V. M. Polovov, Sov. J. Low Temp. Phys. 3, 4 (1977).

    Google Scholar 

  14. G. Song, A. Remhof, D. Labergerie, and H. Zabel, Phys. Rev. B 66, 045407 (2002). G. Song, A. Remhof, K. Theis-Br öhl, and H. Zabel, Phys. Rev. Lett. 79, 5062 (1997). G. Song, M. Geitz, A. Abromeit, and H. Zabel, Phys. Rev. B 54, 14093 (1996).

    Article  ADS  Google Scholar 

  15. C. P. Herring, J. Phys. F: Metal Phys. 6, 99 (1976).

    Article  ADS  Google Scholar 

  16. G. Alefeld and J. V ölkl, Hydrogen in Metals II, Topics in applied Physics volume 29, Springer Verlag.

    Google Scholar 

  17. J. M. Welter, and F. J. Johnen, Z. Physik B 27, 227 (1977).

    Article  ADS  Google Scholar 

  18. R. Surdeanu, R. J. Wijngaarden, E. Visser, J. M. Huijbregtse, J. H. Rector, B. Dam, and R. Griessen, Phys. Rev. Lett. 83, 2054 (1999).

    Article  ADS  Google Scholar 

  19. M. S. Welling, C. M. Aegerter and R. J. Wijngaarden, Europhys. Lett. 61, 473 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Welling, M.S., Aegerter, C.M., Wijngaarden, R.J., Griessen, R. (2004). Effect of Substrate Orientation and Hydrogen Impurities on Flux Penetration in Nb Thin Films. In: Johansen, T.H., Shantsev, D.V. (eds) Magneto-Optical Imaging. NATO Science Series, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1007-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1007-8_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1998-2

  • Online ISBN: 978-94-007-1007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics