Skip to main content

The Mean Velocity Profile of Two-Dimensional Fully Developed Turbulent Plane-Channel Flows

  • Conference paper
IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 74))

Abstract

This work is concerned with the reliable determination of the value of the von Kármán constant for the logarithmic law of the wall. For this purpose, direct measurements of the mean velocity distribution in two-dimensional fully developed turbulent plane-channel flows were carried out. The results obtained were also employed to explain the wide scatter and the discrepancies in the von Kármán constant found in the literature. In addition, the entire set of the current data provides a good basis for assessing questions regarding the scaling of the mean velocity profiles in turbulent channel flows and also to make contributions to answer the question of whether a logarithmic or a power law exists in the overlap region. Data obtained in channel flow, over a wide range of Reynolds numbers, unequivocally support a Reynolds number-independent logarithmic law to describe the overlap region with κ = 0.37 which is very close to κ = 1/e = 0.368 and B = 3.7 for Reτ>2 × 103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barenblatt, G. I. (1993a). “Scaling laws for fully developed shear flows. Part 1. Basic hypotheses and analysis,” J. Fluid Mech. 248, 513–520.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barenblatt, G. I. and Chori, A. J. (1993b). “Scaling laws for fully developed shear flows. Part 2. Processing of experimental data,” J. Fluid Mech. 248, 521–529.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Clark, J. A. (1968). “A study of incompressible turbulent boundary layers in channel flow,” ASME Journal of Basic Engineering 90, pp. 455–467.

    Article  Google Scholar 

  • Clauser, F. H. (1956). “The turbulent boundary layer,” Adv. Appl. Mech. 4, 1–51.

    Article  Google Scholar 

  • Comte-Bellot, G. (1963). “Turbulent flow between two parallel walls,” PhD thesis (in French) University of Grenoble, (In English as ARC 31609), FM 4102.

    Google Scholar 

  • Dean, R. B. (1978). “Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow,” ASME J. Fluid Eng. 100, 215–223.

    Article  Google Scholar 

  • Deissler, R. G. (1955). “Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers,” NACA Tech. Rep. 1210 (supersedes NACA Tech. Note 3145, 1954).

    Google Scholar 

  • Durst, F., Zanoun, E. S., Pashtrapanska, M. (2001). “In situ calibration of hot wires close to highly heat-conducting walls,” Exp. Fluids 31, 103–110.

    Article  Google Scholar 

  • Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R., Nieuwstadt, F. T. M. (1994). “Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment,” J. Fluid Mech. 268, 175–209.

    Article  ADS  Google Scholar 

  • Fischer, M. (1999). “Turbulente wandgebundene Strömungen bei kleinen Reynoldszahlen” Dissertation, Universität Erlangen Nürnberg.

    Google Scholar 

  • Gad-el-Hak, M. and Bandyopadhyay, P. R. (1993). “Reynolds number effect on wall-bounded flows,” Appl. Mech. Rev. 47, 307–365.

    Article  ADS  Google Scholar 

  • Goldstik, M. A. and Stern, V. N (1977). “Hydrodynamic laws and turbulence,” Academy of Science of the Soviet Union, Siberian Dep., Institute for Thermal Physics, Novosibirsk, 326–329 (in Russian).

    Google Scholar 

  • Huffman, G. D. and Bradshaw, P. (1972). “A note on von Karman constant in low Reynolds number turbulent flows,” J. Fluid Mech. 53, 45–60.

    Article  ADS  Google Scholar 

  • Johansson, A. V. and Alfredsson, P. H. (1982) “On the structure of turbulent channel flow,” J. Fluid Mech. 122, 295–314.

    Article  ADS  Google Scholar 

  • Kim, J., Moin, P., Moser, R. (1987). “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133–166.

    Article  ADS  MATH  Google Scholar 

  • Laufer, J. (1954). “Investigation of turbulent flow in a two-dimensional channel,” Report 1053-National Advisory Committee for Aeronautics, 1247–1266.

    Google Scholar 

  • Loehrke, K. I. and Nagib, H. M. (1972). “Experiments on Management of free-stream turbulence,” AGARD Report No. 598, IIT, Chicago, IL.

    Google Scholar 

  • Longwell, P. A. (1966). “Mechanics of Fluid Flow,” McGraw-Hill, New York.

    Google Scholar 

  • Millikan, C. M. (1938). “A critical discussion of turbulent flows in channels and circular tubes,” In Proc. 5th Intl Congress of Appl. Mech., 386–392.

    Google Scholar 

  • Moser, R. T., Kim, J., Mansour, N. N. (1999). “Direct numerical simulation of turbulent channel flow up to Re τ=590,” Phys. Fluids 11, 943–945.

    Article  ADS  MATH  Google Scholar 

  • Nikuradse, J. (1932). “Gesetzmässigkeit der turbulenten Strömung in glatten Rohren,” Forschg. Arb. Ing.-Wes. No. 356.

    Google Scholar 

  • Österlund, J. M., Johansson, A. V., Nagib, H. M., Hites, M. H. (1999). “Wall shear stress measurements in high Reynolds number boundary layers from two facilities,” 30th AIAA Paper 99-3814, Fluid Dynamics Conference, Norflok, Virginia.

    Google Scholar 

  • Österlund, J. M., Johansson, A. V., Nagib, H. M., and Hites, M. H. (2000). “A note on the overlap region in turbulent boundary layers,” Phys. Fluids 12, 1–4.

    Article  ADS  MATH  Google Scholar 

  • Patel, V. C. and Head, M. R. (1969). “Some observations on skin friction and velocity profiles in fully developed pipe and channel flows,” J. Fluid Mech. 38, 181–201.

    Article  ADS  Google Scholar 

  • Perry, A. E., Hafez, S., Chong, M.S. (2001). “A possible reinterpretation of the Princeton superpipe data,” J. Fluid Mech. 49, 395–401.

    ADS  Google Scholar 

  • Prandtl, L (1925). “Uber die ausgebildete Turbulenz,” Z. angew. Math. Mech., 5, 136.

    MATH  Google Scholar 

  • Prandtl, L. (1932). “Zur turbulenten Str”omung in Rohren und laengs Platten,” Ergeb. Aerodyn. Versuch. Göttingen IV. Lieferung, p. 18.

    Google Scholar 

  • Reichardt, H. (1951). “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilungen in glatten Leitungen,” Z. Angew. Math. Mech. 31, 208–219.

    Article  MATH  Google Scholar 

  • Spalding, D. B. (1961). “A single formula for the law of the wall,” ASME Journal of Applied Mechanics, 455–458.

    Google Scholar 

  • Taylor, G. I. (1932). “The transport of vorticity and heat through fluid in turbulent motion,” Proc. Roy. Soc. London, 135, 685–706.

    Article  ADS  Google Scholar 

  • von Kármán, Th. (1930). “Mechanische Aehnlichkeit und Turbulenz,” Nachr. Ges. wiss. Goettingen, p. 68.

    Google Scholar 

  • Wei, T. and Willmarth, W. W., (1989). “Reynolds number effects on the structures of a turbulent channel flow,” J. Fluid Mech. 204, 57–95.

    Article  ADS  Google Scholar 

  • Wosnik, M., Castillo, L., George, W. (2000). “A theory for turbulent pipe and channel flows,” J. Fluid Mech. 421, 115–145.

    Article  ADS  MATH  Google Scholar 

  • Zagarola, M. V., Smits, A. J. (1998). “Mean-flow scaling of turbulent flow,” J. Fluid Mech. 373, 33–79.

    Article  ADS  MATH  Google Scholar 

  • Zanoun, E. S., Nagib, H., Durst F., Monkewitz, P. (2002). “Higher Reynolds number channel data and their comparison to recent asymptotic theory,” 40th AIAA-1102, Aerospace Sciences Meeting, Reno.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Durst, F., Zanoun, E.S., Nagib, H. (2004). The Mean Velocity Profile of Two-Dimensional Fully Developed Turbulent Plane-Channel Flows. In: Smits, A.J. (eds) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Fluid Mechanics and its Applications, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0997-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0997-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3763-1

  • Online ISBN: 978-94-007-0997-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics