Skip to main content

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 75))

  • 664 Accesses

Abstract

A panel forced by unsteady aerodynamic loads is investigated in the supersonic flow regime. This aeroelastic system exhibits complex dynamics including limit cycle oscillations, and chaos. A finite-difference method and proper orthogonal decomposition are employed to detect parametric changes. The sensitivity of the chaotic dynamics to parametric changes is shown to be an effective tool for detecting structural modifications, such as variations of the stiffness of the upstream and downstream mounting points. Most current studies of such problems are based on linear theories. In contrast, the results presented herein are obtained using chaotic dynamics, and have the advantage of an increased accuracy in detecting damage and monitoring structural health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel, H.D.I. (1996). Analysis of observed chaotic data. Springer-Verlag.

    Google Scholar 

  • Abarbanel, H. D. I., Brown, R., Sidorowich, J.J., and Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4):1331–1392.

    Article  MathSciNet  Google Scholar 

  • Abdalla, M. O., Grigoriadis, K. M., and Zimmerman, D. C. (1998). Enhanced structural damage detection using alternating projection methods. AIAA Journal, 36(7):1305–1311.

    Article  Google Scholar 

  • Amaravadi, V. K., Mitchell, K., Rao, V. S., and Derriso, M. M. (2002). Structural integrity monitoring of composite patch repairs using wavelet analysis and neural networks. In Davies, L. P., editor, Proceedings of SPIE: Smart Structures and Materials 2002: Smart Structures and Integrated Systems, volume 4701, pages 156–166, San Diego, California.

    Chapter  Google Scholar 

  • Azeez, M. F. A. and Vakakis, A. F. (2000). Proper orthogonal decomposition of a class of vibroimpact oscillations. Journal of Sound and Vibration, 240(5):859–889.

    Article  Google Scholar 

  • Banbrook, M., Ushaw, G., and McLaughlin, S. (1997). How to extract Lyapunov exponents from short and noisy time series. IEEE Transactions on Signal Processing, 45(5):1378–1382.

    Article  Google Scholar 

  • Bolotin, V. V., Grishko, A. A., Kounadis, A. N., and Gantes, C. J. (2001). The fluttering panel as a continuous nonlinear nonconservative system. Journal of Vibration and Control, 7(2):233–247.

    Article  MATH  Google Scholar 

  • Bow, T. S. (2002).Pattern Recognition and Image Preprocessing.Marcel Dekker, New York.

    Book  Google Scholar 

  • Broomhead, D. S. and King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D, 20(1):217–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, T. T. and Zimmerman, D. C.(1999). Procedure to extract Ritz vectors from dynamic testing data. Journal of Structural Engineering, 125(12):1393–1400.

    Google Scholar 

  • Chancellor, R. S., Alexander, R. M., and Noah, S. T. (1996). Detecting parameter changes using experimental nonlinear dynamics and chaos. Journal of Vibration and Acoustics,118(3):375–383.

    Article  Google Scholar 

  • Chatterjee, A., Cusumano, J. P., and Chelidze, D. (2002). Optimal tracking of parameter drift in a chaotic system: Experiment and theory. Journal of Sound and Vibration,250(5):877–901.

    Article  Google Scholar 

  • Chelidze, D., Cusumano, J. P., and Chatterjee, A. (2002). A dynamical systems approach to damage evolution tracking, part 1: Description and experimental application. ASME Journal of Vibration and Acoustics, 124(2):250–257.

    Article  Google Scholar 

  • Copeland, G. S. and Moon, F. C. (1992). Chaotic flow-induced vibration of a flexible tube with end mass. Journal of Fluids and Structures, 6(3):705–718.

    Article  Google Scholar 

  • Cusumano, J. P., Chelidze, D., and Chatterjee, A. (2002). A dynamical systems approach to damage evolution tracking, part 2: Model-based validation and physical interpretation. ASME Journal of Vibration and Acoustics, 124(2):258–264.

    Article  Google Scholar 

  • Darbyshire, A.G. and Broomhead, D. S. (1996). Robust estimation of tangent maps and Lyapunov spectra. Physica D, 89(1):287–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Report LA-13070-MS, Los Alamos National Laboratories, Los Alamos, NM.

    Google Scholar 

  • Dowell, E.H. (1966). Nonlinear oscillations of a fluttering plate. AIAA Journal, 4(7):1267–1275.

    Article  Google Scholar 

  • Dowell, E.H. (1975). Aeroelasticity of Plates and Shells. Noordhoff International Publishing, Leyden.

    MATH  Google Scholar 

  • Dowell, E.H. (1989). A Modern Course in Aeroelasticity. Kluwer Academic Publishers, Dordrecht, ii edition.

    Google Scholar 

  • Dowell, E.H. and Ventres, C. S. (1970). Comparison of theory and experiment for nonlinear flutter of loaded plates. AIAA Journal, 8(9):2022–2030.

    Article  MATH  Google Scholar 

  • Dowell, E.H. and Voss, H. M. (1965). Theoretical and experimental panel flutter studies in the mach number range 1.0 to 5.0. AIAA Journal, 3(12):2292–2304.

    Article  Google Scholar 

  • Epureanu, B.I. (2003). A parametric analysis of reduced order models of viscous flows in turbomachinery. Journal of Fluids and Structures. to appear.

    Google Scholar 

  • Epureanu, B.I. and Dowell, E. H. (2001). Reduced order system identification of nonlinear aeroelastic systems. In Proceedings of the First M.I.T. Conference on Computational Fluid and Solid Mechanics, volume 1, pages 1152–1160, Cambridge, Massachusetts.

    Google Scholar 

  • Epureanu, B. I., Dowell, E. H., and Hall, K. C. (2002). Mach number influence on reduced order models of inviscid potential flows in turbomachinery. Journal of Fluids Engineering, 124(4):977–987.

    Article  Google Scholar 

  • Epureanu, B. I., Hall, K. C., and Dowell, E. H. (2000). Reduced order models of unsteady transonic viscous flows in turbomachinery. Journal of Fluids and Structures, 14(8):1215–1235.

    Article  Google Scholar 

  • Epureanu, B. I., Hall, K. C., and Dowell, E. H. (2001). Reduced order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling.Journal of Fluids and Structures,15(2):255–276.

    Google Scholar 

  • Epureanu, B. I., Tang, L.S., and Paidoussis, M. P. (2003a). Coherent structures and their influence on the dynamics of aeroelastic panels. International Journal of Non-Linear Mechanics. to appear.

    Google Scholar 

  • Epureanu, B. I., Tang, L.S., and Paidoussis, M. P. (2003b). Observations of the dynamics of panels in supersonic flow. In Proceedings of the Second M.I.T. Conference on Computational Fluid and Solid Mechanics, volume 2, pages 1332–1336, Cambridge, Massachusetts.

    Google Scholar 

  • Faxrax, C. R., Doebling, S.W., and Nix, D. A. (2001). Vibration-based structural damage identification. Philosophical Transactions of the Royal Society of London: A — Mathematical, Physical and Engineering Sciences,359(1778):131–149.

    Article  Google Scholar 

  • Feeny, B.F. (2002). On the proper orthogonal modes and normal modes of continuous vibration systems.Journal of Vibration and Acoustics,124(1):157–160.

    Article  Google Scholar 

  • Feeny, B. F., Yuan, C.M., and Cusumano, J. P. (2001). Parametric identification of an experimental magneto-elastic oscillator. Journal of Sound and Vibration, 247(5):785–806.

    Article  Google Scholar 

  • Fraser, A.M. and Swinney, H. L. (1986). Independant coordinates for strange attractors from mutual information. Physical Review A, 33(1):1134–1140.

    Article  MathSciNet  MATH  Google Scholar 

  • Grassberger, P. (1990). An optimized box-assisted algorithm for fractal dimensions. Physics Letters A,148(1):63–68.

    Article  MathSciNet  Google Scholar 

  • Grassberger, P., Schreiber, T., and Schaifrath, C. (1991). Nonlinear time sequence analysis. International Journal of Bifurcation and Chaos, 1(3):521–547.

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Holmes, P., Lumley, J.L., and Berkooz, G. (1996). Turbulence, Coherent Structures, Dynamical Systems and Symmetry. University Press, Cambridge, MA.

    Book  MATH  Google Scholar 

  • Kacprzynski, G. J., Gumina, M., Roemer, M. J., Cagulat, D. E., Galie, T. R., and McGroarty, J.J. (2001a). A prognostic modeling approach for predicting recurring maintenance for shipboard propulsion systems. In Proceedings of IGTI 2001 Turbo Expo, volume 1, pages 1–7, New Orlelans, LA. ASME.

    Google Scholar 

  • Kacprzynski, G. J., Roemer, M. J., Hess, A.J., and Bladen, K. R. (2001b). Extending fmeca — health management design optimization for aerospace applications. In Proceedings of IEEE Aerospace Conference, volume 1, pages 1–8, Big Sky, MO. IEEE.

    Google Scholar 

  • Kantz, H. and Schreiber, T. (1997). Nonlinear time series analysis. Cambridge, New York.

    MATH  Google Scholar 

  • Kappagantu, R.V. and Feeny, B. F. (2000). Part I: Dynamical characterization of a frictionally exited beam. Nonlinear Dynamics, 22(4):317–334.

    Article  MATH  Google Scholar 

  • Kim, D.H. and Lee, I. (2000). Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedom airfoil with a freeplay non-linearity. Journal of Sound and Vibration,234(5):859–880.

    Article  Google Scholar 

  • Langthjem, M.A. and Sugiyama, Y. (2000).Dynamic stability of columns subjected to follower loads: A survey. Journal of Sound and Vibration, 238(5):809–851.

    Article  Google Scholar 

  • Lighthill, M.J. (1953). Oscillating airfoils at high Mach number. Journal of the Aeronautical Sciences,20(6):402–406.

    MathSciNet  MATH  Google Scholar 

  • Ljung, L. (1999). System Identification — Theory for the User. Prentice Hall, New York.

    Google Scholar 

  • Loh, C.H. and Tou, I. C. (1995). A system identification approach to the detection of changes in both linear and nonlinear structural parameters. Earthquake Engineering & Structural Dynamics,24(1):85–97.

    Article  Google Scholar 

  • Masri, S. F., Miller, R. K., Saud, A.F., and Caughey, T. K. (1987). Identification of nonlinear vibrating structures: Part i — formulation. Journal of Applied Mechanics, 109(54):918–922.

    Article  Google Scholar 

  • Miller, S. A., Turner, K.L., and MacDonald, N. C. (1997). Microelectromechanical scanning probe instruments for array architectures. Review of Scientific Instruments, 68(11):4155–4162.

    Article  Google Scholar 

  • Moon, F.C. (1992). Chaotic and Fractal Dynamics: an introduction for applied scientists and engineers. John Wiley & Sons, New York.

    Book  Google Scholar 

  • Nerenberg, M.A.H. and Essex, C. (1990). Correlation dimension and systematic geometric effects. Physical Review A, 42(1):7065–7074.

    Article  MathSciNet  Google Scholar 

  • Niho, T., Horie, T., and Tanaka, Y. (2000). Numerical instability of magnetic damping problem of elastic plate. IEEE Transactions on Magnetics, 36(4, pt. 1):1374–1377.

    Google Scholar 

  • Paidoussis, M.P. (1986). Stability of a chain of cylinders travelling underwater. In Proceedings of 5-th International Offshore Mechanics and Arctic Engineering Symposium, volume 1, pages 483–490, New Orleans, LA. ASME.

    Google Scholar 

  • Paidoussis, M.P. (1998). Fluid-Structure Interactions: Slender Structures and Axial Flow.Academic Press, San Diego, CA.

    Google Scholar 

  • Pavlidis, T. (1982). Algorithms for Graphics and Image Processing. Computer Science Press, Rockville, MD.

    Google Scholar 

  • Pecora, L.M. and Caroll, T. L. (1996). Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data.Chaos, 6(3):432–439.

    Article  MathSciNet  MATH  Google Scholar 

  • Reynolds, R.R. and Dowell, E. H. (1993). Nonlinear aeroelastic response of panels. In Proceedings of 34-th AIAA/ ASME/ ASCE/ ASC Structures, Structural Dynamics, and Materials Conference, volume 1, pages 1–13, La Jolla, CA. AIAA.

    Google Scholar 

  • Reynolds, R. R., Virgin, L.N., and Dowell, E. H. (1993). High-dimensional chaos can lead to weak turbulence. Nonlinear Dynamics,4(1):531–546.

    Article  Google Scholar 

  • Roemer, M. J., Kacprzynski, G. J., Schoeller, M., Howe, R., and Friend, R. (2001). Advanced test cell diagnostics for gas turbine engines (usaf automated jet engine test strategy — ajets. In Proceedings of IGTI 2001 Turbo Expo, volume 1, pages 1–10, New Orleans, LA. ASME.

    Google Scholar 

  • Sadeghi, M.H. and Fassois, S. D. (1997). Geometric approach to nondestructive identification of faults in stochastic structural systems. AIAA Journal,35(4):700–705.

    Article  Google Scholar 

  • Schreiber, T. (1995). Efficient neighbor searching in nonlinear time series analysis. International Journal of Bifurcation and Chaos,5(2):349–358.

    Article  MATH  Google Scholar 

  • Sirovich, L. (1987). Turbulence and the dynamics of coherent structures, part I: Coherent structures. Quarterly of Applied Mathematics,XLV(3):561–571.

    MathSciNet  Google Scholar 

  • Smyth, A. W., Masri, S. F., Chassiakos, A.G., and Caughey, T. K. (1999). On-line parametric identification of MDOF nonlinear hysteretic systems. ASCE Journal of Engineering Mechanics, 125(2):133–142.

    Article  Google Scholar 

  • Sohn, H. and Farrar, C. R. (2001). Damage diagnosis using time series analysis of vibration signals.Smart Materials and Structures,10(3):446–451.

    Article  Google Scholar 

  • Thothandri, M. and Moon, F. C. (1999). An investigation of nonlinear models for a cylinder row in a cross flow. Journal of Pressure Vessel Technology, 121(1):133–141.

    Article  Google Scholar 

  • Trickey, S. T., Todd, M., Seaver, M., and Nichols, J. (2002). Geometric time domain methods of vibration based damage detection. In Proceedings of the SPIE 9-th Smart Structures and Materials Conference, volume 1, pages 1–9, San Diego, California.

    Google Scholar 

  • Turner, K. L., Miller, S. A., Hartwell, P. G., MacDonald, N. C., Strogatz, S. H., and Adams, S. G. (1998). Five parametric resonances in a microelectromechanical system. Nature, 396(6707):149–152.

    Article  Google Scholar 

  • Vors, T. E. L., Heertjes, M. F., Campen, D. H., Kraker, A., and Fey, R. H. B. (1998). Experimental and numerical analysis of the steady state behaviour of a beam system with impact. Journal of Sound and Vibration, 212(2):321–336.

    Article  Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H.L., and Vastano, J. A. (1984). Determining Lyapunov exponents from a time series. Physica D, 16(1):285–317.

    MathSciNet  Google Scholar 

  • Wong, Y. S., Voitcu, O, and Popescu, C. (2001). A new approach for nonlinear dynamic predictions. Advances in Computational Mathematics, pages 1–25. preprint.

    Google Scholar 

  • Wu, S.F. and Zhu, J. (1997). Stability analysis of a nonlinear plate in mean flow. Journal of Computational Acoustics,5(3):137–155.

    Article  Google Scholar 

  • Zang, C. and Imregun, M. (2001). Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. Journal of Sound and Vibration, 242(5):813–827.

    Article  Google Scholar 

  • Zimmerman, D.C. (2000). Model validation and verification of large and complex space structures. Inverse Problems in Engineering, 8(2):93–118.

    Article  MathSciNet  Google Scholar 

  • Zimmerman, D. C., Yap, K., and Hasselman, T. (1999). Evolutionary approach for model refinement. Mechanical Systems and Signal Processing, 13(4):609–625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Epureanu, B.I. (2003). Chaotic Vibration-Based Damage Detection in Fluid-Structural Systems. In: Benaroya, H., Wei, T.J. (eds) IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid Structure Interactions Using Analysis, Computations and Experiments. Fluid Mechanics and its Applications, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0995-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0995-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3762-4

  • Online ISBN: 978-94-007-0995-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics