Skip to main content

An analytical approach to nucleation solutions and pulses in the one-dimensional real and complex Ginzburg-Landau equations

  • Conference paper
Instabilities and Nonequilibrium Structures IX

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 9))

  • 220 Accesses

Abstract

We study the one-dimensional supercritical real and complex subcritical Ginzburg- Landau equations. In the real case, with periodic boundary conditions in a finite box, we construct analytically nucleation solutions allowing transitions between stable plane waves. Moreover we construct vortex solutions and study the Eckhaus bifurcation in a finite box. The Lyapounov functional for the above stationary solutions is also discussed. In the complex case we study stationary localized solutions in the region where there exist coexistence of homogeneous attractors. Using a matching approach we construct analytically pulses and show that their appearance is related to a saddle-node bifurcation. Our approximation scheme presented here is valid through the whole intermediate range of parameters between the variational and conservative limit. We perform numerical simulations which are in good agreement with our theoretical predictions. This review is based on the original works [4244].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Newell and J.A. Whitehead, J. Fluid Meek. 38 (1969) 279.

    Article  ADS  MATH  Google Scholar 

  2. L.A. Segel, J. Fluid Meeh. 38 (1969) 203.

    Article  ADS  MATH  Google Scholar 

  3. J.T. Stuart, R.C. Di Prima, Proc. R. Soc. Lond. A. 362 (1978) 27.

    Article  ADS  Google Scholar 

  4. C. Elphick, E. Tirapegui, M. Brachet, P. Coullet and looss, Physica D 29 (1987) 95.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J.S. Langer and V. Ambegaokar, Phys. Rev. 164 (1967) 498.

    Article  ADS  Google Scholar 

  6. D.E. McCumber and I. Halperin, Phys. Rev. B 1 (1970) 1054.

    Article  ADS  Google Scholar 

  7. M.I. Tribelsky, S. Kai and Y. Yamazaki, Prog. Theor. Phys. 86 (1991) 963.

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Graham and T. Tel, Pllys. Rev. A 42 (1990) 466l.

    ADS  Google Scholar 

  9. L. Kramer and W. Zimmermann, Physica 16 D (1985) 22l.

    Google Scholar 

  10. L. Tuckerman and D. Barkley, Physica 46 D (1990) 57.

    MathSciNet  ADS  Google Scholar 

  11. I.S. Gradshteyn and L.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press (1965).

    Google Scholar 

  12. M. C. Cross and P.C. Hohenberg, Rev. Modern Phys. 65, 581 (1993) and references therein.

    Article  Google Scholar 

  13. D. J. Tritton, Physical fluid Dynamics, Van Nostrand Reinhold, New York, chap. 19, 1977.

    Book  MATH  Google Scholar 

  14. J. J. Hegseth, C. D. Andereck, F. Hayot, and Y. Pomeau, Phys. Rev. Lett. 62, 257 (1989).

    Article  ADS  Google Scholar 

  15. See M. J. Landman, Stud. Appl, Math. 76, 187 (1987) and references therein.

    MathSciNet  MATH  Google Scholar 

  16. R. J. Deissler, J. Stat. Phys. 54, 1459 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  17. J. J. Niemela, G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 64, 1365 (1990).

    Article  ADS  Google Scholar 

  18. E. Moses, J. Fineberg and V. Steinberg, Phys. Rev. A 35, 2757 (1987).

    ADS  Google Scholar 

  19. P. Kolodner, D. Bensimon and C. M. Surko, Phys. Rev. Lett. 60, 1723 (1988).

    Article  ADS  Google Scholar 

  20. R. Heinrichs, G. Ahlers and D. S. Cannell, Phys. Rev. A 35, 2761 (1987).

    ADS  Google Scholar 

  21. P. Kolodnor, C M. Surko, A. Passner and H. I. Williams, Phys. Rev. A 36, 2499 (1987).

    ADS  Google Scholar 

  22. P. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996).

    Article  ADS  Google Scholar 

  23. I. S. Aranson, L. S. Tsimring, Physica A, 249, 103 (1998).

    Article  Google Scholar 

  24. L. Pastur, M. Henriot and R. Ribotta, Phys. Rev. Lett. 86, 228, (2001).

    Article  ADS  Google Scholar 

  25. P. Coullet, C. Riera and C. Tresser, Phys. Rev. Lett. 84, 3069, (2000).

    Article  ADS  Google Scholar 

  26. Y. Pomeau, Physica (Amsterdam) 23D, 3 (1986).

    ADS  Google Scholar 

  27. [27] V. Hakim and Y. Pomeau, EUT. J. Mech. B/Fluids. Suppl. 10, 137 (1991).

    MathSciNet  MATH  Google Scholar 

  28. B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. A 42, 6009 (1990).

    Article  ADS  Google Scholar 

  29. V. V. Afanasjev, N. Akhmedicv and J. M. Soto-Crespo, Phys. Rev. E 53, 1931 (1996).

    ADS  Google Scholar 

  30. J. M. Soto-Crespo, N. Akhmediev, V. V. Afanasjev and S. Wabnitz, Phys. Rev. E 55, 4783 (1997).

    ADS  Google Scholar 

  31. N. Akhmediev, V. V. Afanasjev and J. M. Sota-Crespo, Phys. Rev. E 53, 1190 (1996).

    ADS  Google Scholar 

  32. R. J. Deissler and H. R. Brand, Pllys. Rev. Lett. 72, 478 (1994).

    Article  ADS  Google Scholar 

  33. R. J. Deissler and H. R. Brand, Phys. Rev. E 51, R852 (1995).

    ADS  Google Scholar 

  34. R. J. Deissler and H. R. Brand, Phys. Lett. A 146, 252 (1990).

    ADS  Google Scholar 

  35. P. Marcq, H. Chatc and R. Conte, Physica D 13, 305 (1994).

    ADS  Google Scholar 

  36. This was observed in the study of Eq. (1) as a model of saddle node bifurcation in extended medium; M. E. Brachet, P. Coullet and S. Fauve, Europhys. Lett. 4, 1017 (1987).

    Article  ADS  Google Scholar 

  37. O. Thual and S. Fauve, J. Phys. France. 49, 1829 (1988).

    Article  Google Scholar 

  38. S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 (1990).

    Article  ADS  Google Scholar 

  39. W. van Saarloos and P.C. Hohenberg, Phys. Rev. Lett. 64, 749 (1990).

    Article  ADS  Google Scholar 

  40. W. van Saarloos and P.C. Hohenberg, Physica D 56, 303 (1992).

    ADS  Google Scholar 

  41. E. J. Doedel, H.B. Keller, and J. P. Kernevez, Int. J. Bifurcation Chaos 13, 493, 1991; Int. J. Bifurcation Chaos 14, 745 (1991).

    Article  MathSciNet  Google Scholar 

  42. O. Descalzi, M. Argentina and E. Tirapegui, to appear in Int. J. Bifurcation Chaos 12(10) 2219 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Descalzi, M. Argentina and E. Tirapcgui, to appear in Phys. Rev. E (January 2003).

    Google Scholar 

  44. O. Descalzi, M. Argentina and E. Tirapegui, to appear in Int. J. Bifurcation Chaos 12(11) 2459 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Descalzi, O. (2004). An analytical approach to nucleation solutions and pulses in the one-dimensional real and complex Ginzburg-Landau equations. In: Descalzi, O., Martínez, J., Rica, S. (eds) Instabilities and Nonequilibrium Structures IX. Nonlinear Phenomena and Complex Systems, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0991-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0991-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3760-0

  • Online ISBN: 978-94-007-0991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics