Skip to main content

Turbulent Heat and Mass Transfer in Porous Media

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

Modeling of macroscopic transport for incompressible flows in porous media has been based on the volume-average methodology for either heat, see Hsu and Cheng [10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antohe, B. V. and Lage, J. L. (1997). A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer, 40, 3013–24.

    Article  MATH  Google Scholar 

  2. Bear, J. (1972). Dynamics of fluids in porous media. Dover, New York.

    Google Scholar 

  3. Bear, J. and Bachmat, Y. (1967). A generalized theory on hydrodynamic dispersion in porous media. I ASH symposium on artificial recharge and management of aquifers, Haifa, Israel, P.N. 72, pp. 7-16. IASH.

    Google Scholar 

  4. de Lemos, M. J. S. and Braga, E. J. (2003). Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer, 30, 615 24.

    Google Scholar 

  5. de Lemos, M. J. S. and Mesquita, M. S. (2003). Turbulent mass transport in saturated rigid porous media. Int. Comm. Heat Mass Transfer, 30, 105–13.

    Article  Google Scholar 

  6. de Lemos, M. J. S. and Pedras, M. H. J. (2001). Recent mathematical models for turbulent flow in saturated rigid porous media. J. Fluids Eng., 123, 935–40.

    Article  Google Scholar 

  7. de Lemos, M. J. S. and Rocamora, Jr, F. D. (2002). Turbulent transport modeling for heated flow in rigid porous media. Proceedings of the 12th international heat transfer conference, Volume 4, pp. 791-6.

    Google Scholar 

  8. Getachewa, D., Minkowycz, W. J. and Lage, J. L. (2000). A modified form of the k-∈ model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transfer, 43, 2909–15.

    Article  Google Scholar 

  9. Gray, W. G. and Lee, P. C. Y. (1977). On the theorems for local volume averaging of multiphase system. Int. J. Multiphase Flow, 3, 333–40.

    Article  MATH  Google Scholar 

  10. Hsu, C. T. and Cheng, P. (1990). Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33, 1587–97.

    Article  MATH  Google Scholar 

  11. Kuwahara, F. and Nakayama, A. (1998). Numerical modeling of non-Darcy convective flow in a porous medium. Heat transfer 1998: proceedings of the 11th international heat transfer conference, Kyongyu, Korea, Volume 4, pp. 411-16. Taylor and Francis, Washington, DC.

    Google Scholar 

  12. Kuwahara, F., Nakayama, A. and Koyama, H. (1996). A numerical study of thermal dispersion in porous media. J. Heat Transfer, 118, 756–61.

    Article  Google Scholar 

  13. Lee, K. and Howell, J. R. (1987). Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proceedings of the 1987 ASME-JSME thermal engineering joint conference, Honolulu, Hawaii, Volume 2, pp. 377-86. ASME, New York.

    Google Scholar 

  14. Masuoka, T. and Takatsu, Y. (1996). Turbulence model for flow through porous media. Int. J. Heat Mass Transfer, 39, 2803–9.

    Article  MATH  Google Scholar 

  15. Nakayama, A. and Kuwahara, F. (1999). A macroscopic turbulence model for flow in a porous medium. J. Fluids Eng., 21, 427–33.

    Article  Google Scholar 

  16. Pedras, M. H. J. and de Lemos, M. J. S. (2000). On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer, 27, 211–20.

    Article  Google Scholar 

  17. Pedras, M. H. J. and de Lemos, M. J. S. (2001). Macroscopic turbulence modeling for incompressible flow through underformable porous media. Int. J. Heat Mass Transfer, 44, 1081–93.

    Article  MATH  Google Scholar 

  18. Pedras, M. H. J. and de Lemos, M. J. S. (2001). On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. J. Fluids Eng., 123, 941–7.

    Article  Google Scholar 

  19. Pedras, M. H. J. and de Lemos, M. J. S. (2001). Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two-equation closure. Numer. Heat Transfer, Part A Applications, 39, 35–59.

    Article  Google Scholar 

  20. Rocamora, Jr, F. D. and de Lemos, M. J. S. (2000). Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transfer, 27, 825–34.

    Article  Google Scholar 

  21. Slattery, J. C. (1967). Flow of viscoelastic fluids through porous media. AIChE J., 13, 1066–71.

    Article  Google Scholar 

  22. Wang, H. and Takle, E. S. (1995). Boundary-layer flow and turbulence near porous obstacles. Boundary Layer Meteorol, 74, 73–88.

    Article  Google Scholar 

  23. Whitaker, S. (1969). Advances in theory of fluid motion in porous media. Ind. Eng. Chem., 61, 14–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

de Lemos, M.J.S. (2004). Turbulent Heat and Mass Transfer in Porous Media. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics