Skip to main content

Porous Media Theory as Basis for Model of Fouling Layers Formation in Heat Exchangers

Condenser and evaporator of refrigeration machines and heat pumps

  • Conference paper
Book cover Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

One of the many topics of scientific interest in the Department of Refrigeration Machines at the Odessa State Academy of Refrigeration (OSAR) is the adaptation of modern methods of applied thermodynamics for the analysis and optimization of machines working in inverse thermodynamic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auracher, H. (1981). Effective thermal conductivity of frost. Seminar on advancement in heat exchangers, Dubrovnik.

    Google Scholar 

  2. Bejan, A. (1982). Entropy generation through heat and fluid flow. Wiley, New York.

    Google Scholar 

  3. Bejan, A. (1995). Entropy generation minimization in heat transfer. In Second law analysis of energy systems: toward the 21st century (ed. E. Sciubba and M. Moran), pp. 363-72. Proceedings of international conference ROMA.

    Google Scholar 

  4. Bejan, A., Tsatsaronis, G. and Moran, M. (1996). Thermal design and optimization. Wiley, New York.

    Google Scholar 

  5. De Olivera, S., Schwarzer, B., LeGoff, P. and Tondeur, D. (1991). Comparison of the entropie, exergetic and economic optima of a heat exchanger. In Analysis of thermal and energy systems (ed. D. Kouremenos, G. Tsatsaronis and C. Rakopoulos), pp. 105-16. Proceedings of international conference ATHENS′91.

    Google Scholar 

  6. Fraas, A. and Özisik, M. N. (1971). Heat exchanger design. Wiley, Atomizdat, Moscow. In Russian.

    Google Scholar 

  7. Nikulshin, R. (1989). Experimental research of heat exchange process in rollingwelded evaporators with compelled movement of air. Refrig. Technique Tech., 48, 57–9.

    Google Scholar 

  8. Refrigeration engineering encyclopedia (1960). Gostorgizdat, Moscow.

    Google Scholar 

  9. Reznikov, L. (1987). Perfection of processes and apparatuses of gasification systems of high pressure cryogenic products. PhD thesis. Odessa State Academy of Refrigeration, Odessa.

    Google Scholar 

  10. Robert, L. and Feidt, M. (2000). Optimisation dynamique du comportement d’un échanger de chaleur soumis au phénomène d’encrassement. Entropie, 226, 28–36.

    Google Scholar 

  11. Rosenfeld, L. and Tkahev, A. (1960). Refrigeration machines and apparatuses. Gostorgizdat, Moscow.

    Google Scholar 

  12. Schaal, L. and Feidt, M. (1999). Optimization of the dynamic behavior of a heat exchanger subject to fouling compaison of three optimization models. Int. J. Appl Thermodyn., 2, 89–96.

    Google Scholar 

  13. Shamray, A. (1993). Choice of optimal composition of oil and ozone-saving refrigerants for refrigeration machines. PhD thesis. Odessa State Academy of Refrigeration, Odessa.

    Google Scholar 

  14. Tchuklin, S. G. and Thepurnenco, V. P. (1975). Development and research of new methods, apparatuses and cooling systems for optimal conditions of a products storage. Technical Report. Odessa State Academy of Refrigeration, Odessa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Morosuk, T.V. (2004). Porous Media Theory as Basis for Model of Fouling Layers Formation in Heat Exchangers. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics