Skip to main content

Thermodynamics of Fluids in Mesoporous Media

Application to capillary pumped loops and loop heat pipes

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

  • 545 Accesses

Abstract

The pore size range of the mesoporous media is typically 2–50 nm. These sizes are found in inorganic xerogels, e.g alumina and silica powders, porous glasses and pillared or non-pillared clays. They are also found in meso-structurated materials of the M41S-type that have an ordered pore system, see Beck et al. [2]. A great variety of pore structures can be found in mesoporous materials: crystalline (mainly hexagonal), polyhedral, lamellar, pillared, nanotubes (carbons), ‘hairy tubes’, etc., see Bejan et al. [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. S., Hallinan, K. P. and Lekan, J. (1998). A study of the fundamental operations of a capillary driven heat transfer device in both normal and low gravity. Amer. Inst Phys. Conf. Proc., 420, 471–7. Woodbury, New York.

    Google Scholar 

  2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowitz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Oison, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Amer. Chem. Soc., 114, 10834–43.

    Article  Google Scholar 

  3. Bejan, A., Dincer, L, Lorente, S., Miguel, A. F. and Reis, A. H. (2004). Porous and complex flow structures in modern technologies. Springer-Verlag, New York.

    Google Scholar 

  4. Chandratilleke, R., Hatakeyama, H. and Nakagome, H. (1998). Development of cryogenic loop heat pipes. Cryogenics, 38, 263–9.

    Article  Google Scholar 

  5. Figus, C, Le Bray, Y., Bories, S. and Prat, M. (1999). Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations. Int. J. Heat Mass Transfer, 42, 2557–69.

    Article  Google Scholar 

  6. Gregg, S. J. and Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd edn). Academic Press, London.

    Google Scholar 

  7. Kamotani, Y. (1999). Thermocapillary flow under microgravity—experimental results. Adv. Space Res., 24, 1357–66.

    Article  Google Scholar 

  8. Kaya, T. and Hoang, T. (1999). Mathematical modeling of loop heat pipes and experimental validation. J. Thermophys. Heat Transfer, 13, 314-;20.

    Google Scholar 

  9. Ku, J. (1999). Operating characteristics of loop heat pipes. Proceedings of the 29th international conference of environmental systems, Denver, CO. Paper no. 981212.

    Google Scholar 

  10. Liao, Q. and Zhao, T. S. (1999). Evaporative heat transfer in a capillary structure heated by a grooved block. J. Thermophys. Heat Transfer, 13, 126–33.

    Article  Google Scholar 

  11. Muraoka, I., Ramos, F. M. and Vlassov, V. V. (2001). Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. Int. J. Heat Mass Transfer, 25, 2287–97.

    Article  Google Scholar 

  12. Reis, A. H. and Rosa, R. (2002). Sorption isotherms as a fundamental tool for the analysis of coupled heat and mass fluxes in porous media. Proceedings of the first international conference on applications of porous media, Jerba, Tunisia.

    Google Scholar 

  13. White, F. M. (1999). Fluid mechanics (4th edn). McGraw-Hill, New York.

    Google Scholar 

  14. Zhang, N. (2001). Innovative heat pipe systems using a new working fluid. Int. Comm. Heat Mass Transfer, 28, 1025–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Reis, A.H. (2004). Thermodynamics of Fluids in Mesoporous Media. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics