Skip to main content

Contribution of the Thermal and Molecular Diffusion to Convection in a Vertical Porous Cavity

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

In a uniform mixed binary mixture, when a temperature gradient is applied there appears a composition gradient. This thermal diffusion effect is named the Soret effect, and the ratio of the thermal diffusion coefficient to the molecular diffusion coefficient is known as the Soret coefficient, see Soret [20]. Usually, in a binary mixture, the lighter component migrates to the hot side. Theoretical developments related to the calculation of the molecular, thermal and pressure diffusion coefficients have received much attention by different researchers [2, 4, [5, 810, 16,17,19] in this field. Among these, Riley and Firoozabadi [16], Shukla and Firoozabadi [19] and Ghorayeb and Firoozabadi [810] using the irreversible thermodynamic theory, were able to extend the work of de Groot [4]. De Groot developed an analytical relation between the thermal, molecular and pressure diffusion coefficients and the properties of the fluid mixture, such as the temperature, pressure and composition. The advantage of this approach is that the Soret coefficient is calculated at each point of the cavity grid and all diffusion coefficients are completely defined. Compared with other approaches, such as Rutherfood and Roof [17], the theoretical prediction of this approach is much closer to experimental data, especially for non-ideal mixtures, such as hydrocarbon mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benano-Melly, L. B., Caltagirone, J. P., Faissat, B., Montel, F. and Costeseque, P. (2001). Modelling soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int. J. Heat Mass Transfer, 44, 1285–97.

    Article  MATH  Google Scholar 

  2. Bird, R. B. and Stewart, W. E. (2002). Transport phenomena. Wiley, New York.

    Google Scholar 

  3. Chacha, M., Faruque, D., Saghir, M. Z. and Legros, J. C. (2002). Thermodiffusion in binary mixture in the presence of g-jitter. Int. J. Therm. Sci., 41, 899–911.

    Article  Google Scholar 

  4. de Groot, S. R. (1984). Non-equilibrium thermodynamics. Dover, New York.

    Google Scholar 

  5. Dougherty, E. L. and Drickmar, H. G. (1955). Thermal diffusion and molecular motion in liquids. J. Phys. Chem., 59, 443–9.

    Article  Google Scholar 

  6. Faruque, D., Chacha, M., Saghir, M. Z. and Ghorayeb, K. (2003). Compositional variation considering diffusion and convection for binary mixture in porous media. J. Porous Media. In press.

    Google Scholar 

  7. Firoozabadi, A., Ghorayeb, K. and Shukla, K. (2000). Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE J., 46, 892–900.

    Article  Google Scholar 

  8. Ghorayeb, K. and Firoozabadi, A. (2000). Modeling of multicomponent diffusion and convection in porous media. Soc. Petroleum Eng. J., 5, 158–71.

    Google Scholar 

  9. Ghorayeb, K. and Firoozabadi, A. (2000). Molecular, pressure and thermal diffusion in nonideal multicomponent mixtures. AIChE J., 46, 883–91.

    Article  Google Scholar 

  10. Ghorayeb, K. and Firoozabadi, A. (2001). Features of convection and diffusion in porous media for binary systems. J. Can. Petroleum Tech., 40, 21–8.

    Google Scholar 

  11. Herning, F. and Zipperer, L. (1936). Calculation of the viscosity of technical gas mixtures from the viscosity of individual gases. Gas-und Wasserfach., 79, 69–72.

    Google Scholar 

  12. Hirschberg, A. (1988). Role of asphaltenes in compositional grading of a reservoir’s fluid column. J. Petroleum Tech. AIME, 285, 89–94.

    Google Scholar 

  13. Jacqmin, D. J. (1990). Interaction of natural convection and gravity segregation in oil/gas reservoirs. SPE Reservoir Eng. Trans. AIME, 289, 233–8.

    Google Scholar 

  14. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Taylor & Francis, New York.

    Google Scholar 

  15. Peng, D. Y. and Robinson, D. B. (1976). A new two-constant equation of state. Ind. Eng. Chem. Fund., 15, 59–64.

    Article  MATH  Google Scholar 

  16. Riley, M. F. and Firoozabadi, A. (1998). Compositional variation in hydrocarbon reservoirs with natural convection and diffusion. AIChE J., 44, 452–64.

    Article  Google Scholar 

  17. Rutherford, W. M. and Roof, J. G. (1959). Thermal diffusion in methane nbutane mixture in the critical region. J. Phys. Chem., 63, 1506–11.

    Article  Google Scholar 

  18. Schulte, A. M. (1980). Compositional variations within a hydrocarbon column due to gravity. SPE annual technical conference and exhibition, Dallas, TX, September 21-4. SPE 9235.

    Google Scholar 

  19. Shukla, K. and Firoozabadi, A. (1998). A new model of thermal diffusion coefficients in binary hydrocarbon mixtures. Ind. Eng. Chem. Res., 37, 3331–42.

    Article  Google Scholar 

  20. Soret, C. (1880). Influence de 1a temperature sur la distribution des sels dans leurs solutions. Comptes-Rendus de l’Académie des Sciences de Paris, 91, 289–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Jiang, C.G., Saghir, M.Z., Kawaji, M., Ghorayeb, K. (2004). Contribution of the Thermal and Molecular Diffusion to Convection in a Vertical Porous Cavity. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics