Skip to main content

The Mixed Convection Number for Porous Media Flow

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

Convection is a phenomenon, which can be attributed to density gradients, and which may cause altered flow patterns in systems with higher density fluid above lower density fluid. Where a density gradient is present, buoyancy may initiate an additional velocity component upward or downward, i.e. in direction of gravity. It depends on three system properties if the buoyancy impetus changes the flow field in the system. When there is a strong diffusivity, the density gradient may vanish without any effect on the motion. High viscosity of the fluid and/or low permeability of the porous medium are obstacles preventing any changes of flow. The quantitative measure for the relative strength of favouring/hindering processes is the porous medium Rayleigh number, Ra, defined by

$$ Ra = \frac{{k\Delta \rho gH}} {{\mu D}}, $$
(10.1)

with permeability k, maximum density difference Δρ, acceleration due to gravity g, system height H, dynamic viscosity μ and diffusivity D. The dimensionless parameter combination, given in equation (10.1), is basically identical to the dimensionless number introduced by Lapwood [14] and is sometimes referred to as the Lapwood number.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashino, R., Nagase, M. and Vaillancourt, R. (2000). Behind and beyond the MATLAB ODE suite. Comp. Math, with Appl., 40, 491–512.

    Article  MathSciNet  MATH  Google Scholar 

  2. Biitow, E. and Holzbecher, E. (1987). On the modeling of groundwater flow under the influence of salinity. In Proceedings of groundwater contamination: use of models in decision-making (ed. G. Jousma, J. Bear, J. J. Haimes and F. Walter), pp. 263-72, Amsterdam.

    Google Scholar 

  3. Cheng, P. (1977). Combined free and forced convection flow about inclined surfaces in porous media. Int. J. Heat Mass Transfer, 20, 807–14.

    Article  MATH  Google Scholar 

  4. Fan, Y., Duffy, C. J. and Oliver, D. S. (1997). Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. J. Hydrol, 196, 139–84.

    Article  Google Scholar 

  5. FEMLAB (Version 2.2). COMSOL AB. Tegnérgatan 23, SE-111 40 Stockholm, Sweden.

    Google Scholar 

  6. Gartling, D. K. and Hickox, C. E. (1985). Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Meth. Fluids, 5, 995–1013.

    Article  MathSciNet  MATH  Google Scholar 

  7. Henry, H. R. (1960). Salt intrusion into coastal aquifers. Int. Assoc. Sci. Hydrol. Publ., 52, 478–87.

    Google Scholar 

  8. Holzbecher, E. (1998). The influence of variable viscosity on thermal convection in porous media. In Proceedings of heat transfer 98 (ed. A. J. Nowak, C. A. Brebbia, R. Bialoki and M. Zerroukat), pp. 115-24. Computational Mechanics Publications, Southampton.

    Google Scholar 

  9. Holzbecher, E. (1998). Modeling density-driven flow in porous media. Springer, New York.

    Google Scholar 

  10. Holzbecher, E. (2000). Comment on ‘Mixed convection processes below a saline disposal basin’ by C. T. Simmons and K. A. Narayan ( J. Hydrol., 194, 263–85, 1997). J. Hydrol., 229, 290-5.

    Google Scholar 

  11. Holzbecher, E. (2003). Groundwater flow pattern in the vicinity of a salt lake. Hydrobiologica. In press.

    Google Scholar 

  12. Holzbecher, E. and Yusa, Y. (1995). Numerical experiments on free and forced convection in porous media. Int. J. Heat Mass Transfer, 38, 2109–15.

    Article  Google Scholar 

  13. Kaleris, V. and Lagas, G. (2003). Groundwater-seawater interaction at the sea bottom. Proceedings of the XXX conference IAHR, Thessaloniki.

    Google Scholar 

  14. Lapwood, E. R. (1948). Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc, Series A, 225, 508–21.

    Article  MathSciNet  Google Scholar 

  15. MATLAB (Release 13). The MathWorks, Inc. 3 Apple Hill Drive, Natrick, MA 01760-2098, USA.

    Google Scholar 

  16. Nield, D. A. (1968). Onset of thermohaline convection in a porous medium. Water Resources Res., 4, 553–60.

    Article  Google Scholar 

  17. Pop, I. (2003). Unsteady and steady free and mixed convection boundary-layer flows in porous media. In Current issues on heat and mass transfer in porous media (ed. D. B. Ingham), pp. 426-48. Proceedings of the NATO advanced study institute on porous media. Ovidius University Press, Constanta.

    Google Scholar 

  18. Qin, Y., Guo, J. and Kaloni, P. N. (1995). Double diffusive penetrative convection in porous media. Int. J. Eng. Sci., 33, 303–12.

    Article  MathSciNet  MATH  Google Scholar 

  19. Schotting, R. and Landman, A. J. (2003). Towards a physically based theory of high-concentration-gradient dispersion in porous media: the state of the art. In Current issues on heat and mass transfer in porous media (ed. D. B. Ingham), pp. 478-87. Proceedings of the NATO advanced study institute on porous media. Ovidius University Press, Constanta.

    Google Scholar 

  20. Simmons, C. T. and Narayan, K. A. (1997). Mixed convection processes below a saline disposal basin. J. Hydrol., 194, 263–85.

    Article  Google Scholar 

  21. Simmons, C. T., Narayan, K. A. and Wooding, R. A. (1999). On a test case for density-dependent ground water flow and solute transport models: the salt lake problem. Water Resources Res., 35, 3607—20.

    Google Scholar 

  22. Webster, I. T., Norquay, S. J., Ross, F. C. and Wooding, R. A. (1996). Solute exchange by convection within estuarine sediments. Estuar. Coast. Shelf Sci., 42, 171–83.

    Article  Google Scholar 

  23. Yano, Y. (1989). A practical procedure for vertical two-dimensional hydrothermal simulation by finite element method. J. Japanese Assoc. Petroleum Eng., 54, 18–31.

    Article  Google Scholar 

  24. Yusa, Y. (1983). Numerical experiment of groundwater motion under geothermal condition-vying between potential flow and thermal convective flow. J. Geothermal Res. Soc. Japan, 5, 23–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Holzbecher, E. (2004). The Mixed Convection Number for Porous Media Flow. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics