Skip to main content

Remote Sensing biomass of forested ecosystems: Modelling the carbon cycle of the Iztaccíhuatl — Popocatépetl National Park, México

  • Chapter
Ecology and Man in Mexico’s Central Volcanoes Area

Abstract

Increases in the concentration of carbon dioxide, as well as of other so-called greenhouse gases, in the Earth’s atmosphere will lead to climate change. So far, policy responses to limit the effects of climate change have focused on the reduction of emissions of greenhouse gases at source. Another possibility would be to enhance the capacity of ecosystems to act as carbon sinks, such as by increased afforestation, in order to reduce carbon dioxide (CO2) concentrations in the atmosphere. Many countries, especially in the Third World, lack sufficient information on the actual ground cover of different types of (agro) ecosystems, i.e. on carbon pools in the form of terrestrial ecosystems. Without such land cover data, it is almost impossible to analyze properly the non-fossil cycles of these countries. However, such data can be obtained with remotely sensed data from satellite images. To obtain insight into the effects of changes in land cover and the time-scales over which they occur, a dynamic simulation model on carbon cycling of terrestrial ecosystems has been converted into a GIS environment. The results of our case study show a significant correlation between field data on the amount of biomass/carbon of different natural forests and NDVI values from a satellite image of the study area. The results on field data and on NDVI data in combination with production and decomposition rates from literature have been used to calibrate the simulation model. After a sensitivity test, the model has been applied to study the effects of fragmentation on the carbon cycle of the Iztaccihuatl — Popocatépetl National Park and its surrounding buffer areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldred A.H. (1976). Measurement of tropical trees in large-scale aerial photographs, Forest Management Institute, Ottawa, Ontario, Canada.

    Google Scholar 

  • Battaglia, M. and Sands, P.J. (1998). Process-based forest productivity models and their application in forest management. Forest Ecological Management 102: 13–32.

    Article  Google Scholar 

  • Bonan, G.B. (2002). Ecological climatology: Concepts and applications. Cambridge University Press, UK. Pp. 678.

    Google Scholar 

  • Bolin B. (ed.) (1986). The greenhouse effect, climate change and ecosystems. International Council of Scientific Unions Report, SCOPE 29, Wiley, Chichester.

    Google Scholar 

  • Chambers, J.Q., Higuchi, N., Shimel, J.P., Ferreira, L.V. and Melack, J.M. (2000). Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388.

    Article  Google Scholar 

  • Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R., and Birdsey, R.A. (2000). Contrributions of land-use history to carbon accumulation in U.S. forests. Science 290, 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Chávez Cortés, J. M. and Trigo Boix, N. (1996). Programade manejo para el parque nacional Iztaccíhuatl-Popocatépetl. Universidad Autönoma Metropolitana, Unidad Xochimilco, Mexico D.F.

    Google Scholar 

  • Chomitz, K.M. (2000). Evaluating Carbon Offsets From Forestry and Energy Projects: How Do They Compare? Development Research Group. The World Bank, Washington DC.

    Google Scholar 

  • Clevers, J.G.P.W. and Verhoef W. (1990). Modelling and synergetic use of optical and microwave remote sensing. Report 2: LAI estimation from canopy reflectance and NDVI: a sensitivity analysis with the SAIL model BCRS-report 90-39. Delft, The Netherlands.

    Google Scholar 

  • Curran, P. (1980). Multispectial remote sensing of vegetation amount. Progression of the Physical Geography 4: 315–341.

    Article  Google Scholar 

  • Erb R.B. (1980). The large Area Crop Inventory Experiment (LACIE) methodology for area, yield and production estimation: results and perspectives. In: G. Frauysse (ed.) Remote Sensing Application in Agriculture and Hydrology, A.A. Balkema, Rotterdam, pp. 285–297.

    Google Scholar 

  • Heil G.W. and Gerrits M. (1992). RANK: A carbon cycle model of terrestrial ecosystems: Evaluation of CO2 sink enhancement for the Netherlands. Report Resource Analysis, Delft, the Netherlands.

    Google Scholar 

  • Heil G.W., Gerrits M., Janssen L.H.J.M. and Weenink J.B. (1993). A simulation model to evaluate CO2 sink enhancement — modelling the carbon storage and the carbon balance of forested ecosystems in the Netherlands. Proceedings IPCC workshop: “Carbon Balance of World’s Forested Ecosystems: Towards a Global Assessment”. 11-15 May 1992, Joensuu, Finland.

    Google Scholar 

  • Houghton A.R. and Woodwell M.G. (1989). Global climatic change. Scientific American. Vol. 260. no. 4: 36–44.

    Article  CAS  Google Scholar 

  • Hughes, R.F., Kauffman, J.B. and Jaramillo, V.J. (1999). Biomass, carbon, and nutrient dynamics of secondary forests in humid tropical region of Mexico. Ecology 80: 1892–1907.

    Google Scholar 

  • INEGI, (1978). Huejotzingo E14B42. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • INEGI, (1982). Cuautla E14B51. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • INEGI, (1983). Mariano Arista E14B32. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • INEGI, (1985a). Amecameca E14B41. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • INEGI, (1985b). Atlixco E14B52. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • INEGI, (1985c). Chalco E14B31. Carta topografica 1:50,000, Mexico.

    Google Scholar 

  • IPCC, (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. In: Houghton, J.T., Meira Filho, L.G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J., and Callander, B.A. (Eds.). Intergovernmental Panel on Climate Change. Meteorological Office, Bracknell, UK.

    Google Scholar 

  • Kirschbaum, M.U.F. (1999). CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling 118: 17–59.

    Article  CAS  Google Scholar 

  • Kirschbaum, M.U.F. and Mueller, R. (Eds.) (2001). Net Ecosystem Exchange — Cooperative Research Centre for Greenhouse Accounting. Canberra, Australia. Pp. 136.

    Google Scholar 

  • Kirschbaum, M.U.F., Schlamadinger, B. Cannell, M.G.R., Hamburg, S.P., Karjalainen, T., Kurz, W.A., Prisley, S., Schulze, E.D. and Singh, T.P. (2001). A generalised approach of accounting for biospheric carbon stock changes under the Kyoto Protocol. Environmental Science & Policy 4: 73–85.

    Article  CAS  Google Scholar 

  • Lashof, D. and Tirpak D. (eds.) (1989). Policy options for stabilising global climate. EPA draft report to the US Congress.

    Google Scholar 

  • Lieth, H. and Whittaker, R.H. (1975). Primary productivity of the biosphere. Springer. Ecological Studies Vol. 14, p. 339.

    Article  Google Scholar 

  • Mohren, G.M.J, and Klein Goldewijk, C.G.M. (1990). CO2FIX: a dynamic model of the CO2 fixation in forest stands. Report 624, ‘De Dorschkamp’, Research Institute for Forestry and Urban Ecology, Wageningen, The Netherlands. 96p.

    Google Scholar 

  • Moore, P.D. and Chapman, S.B. (1986). Methods in Plant Ecology. Blackwell Science Ltd.

    Google Scholar 

  • Pinty, B. and Verstraete M.M. (1992). GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101: 15–20.

    Article  Google Scholar 

  • Strahler, A.H. (1981). Stratification of natural vegetation for forest and rangeland inventory Landsat digital imagery and collateral data. Int. J. of Remote Sensing 2: 15–41.

    Article  Google Scholar 

  • Tegart, W.J. McG., Sheldon G.W. and Griffiths D.C. (eds.) (1990). Climate Change. The IPCC Impacts Assessment.

    Google Scholar 

  • Ter Steege, H. 1994. Hemiphot, a programme to analyze vegetation indices, light and light quality from hemispherical photographs. Tropenbos Documents no 3. Tropenbos, Wageningen, The Netherlands.

    Google Scholar 

  • Tucker, C.J. and Miller L.D. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127–150.

    Article  Google Scholar 

  • UNFCCC, (1997). The Kyoto Protocol to the United Nations Framework Convention on Climate Change, UNEP/WHMO.

    Google Scholar 

  • Walker, B.H. and Steffen, W.L. (Eds.) (1996). Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Watson, R.T., Noble, I.R., Bolin, B., Ravirdranath, N.H., Verado, D.J. and Dokker, D.J. (Eds.) (2000). Land Use, Land-Use Change and Forestry. A special report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK. p 377.

    Google Scholar 

  • Weismiller, R.A. and Kaminsky S.A. (1978). Application of remote sensing methodology to soil survey research. J. Soil & Water Cons. 33(6), 287–289.

    Google Scholar 

  • Woodwell, G.M. (1984). The carbon dioxide problem. In G.M. Woodwell (ed.), The role of terrestrial vegetation in the global carbon cycle. Measurement by remote sensing. London: John Wiley and Sons, pp. 3–15.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heil, G.W., Bobbink, R., Trigo Boix, N., Verduyn, B. (2003). Remote Sensing biomass of forested ecosystems: Modelling the carbon cycle of the Iztaccíhuatl — Popocatépetl National Park, México. In: Heil, G.W., Bobbink, R., Trigo Boix, N. (eds) Ecology and Man in Mexico’s Central Volcanoes Area. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0969-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0969-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3756-3

  • Online ISBN: 978-94-007-0969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics