Advertisement

Sperm size evolution in Drosophila: inter- and intraspecific analysis

  • Dominique Joly
  • Abraham Korol
  • Eviatar Nevo
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 11)

Abstract

Numerous reports were devoted to the variation of sperm length in relation to sperm competition amongst species. However, studies on intraspecific variations of sperm size are very scarce and the number of sperm measured, very limited. This paper investigates within-individual, between-individual and between-population variation of sperm length in the two cosmopolitan species, D. simulans and D. melanogaster. Sperm length distributions are completely discriminated against with these two species, with the mean values equal to 1.121 ± 0.002 and 1.989 ± 0.008 mm, respectively. Results of intraspecific variation show a contrasting pattern between the two species. The mode of sperm length distributions is much less variable in D. simulans than in D. melanogaster. The sperm size divergence is unaffected whenever the two species are in sympatry (tested at ‘Evolution Canyon’, Mount Carmel, Israel) or in allopatry, but the two species react differentially to abiotic local factors. D. melanogaster, in contrast to D. simulans, shows a clinal pattern in sperm size associated with drought. We discussed this pattern in relation to the potential role of sperm length in the ongoing process of non-random mating and incipient sympatric speciation observed in this locality in D. melanogaster.

Key words

D. melanogaster D. simulans environment geographic variation polymorphism sexual selection sperm length distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Pimentel, H., L.P. Tolbert & W.B. Heed,1994. Utrastructural examination of the insemination reaction in Drosophila. Cell Tiss. Res. 275: 467–476.CrossRefGoogle Scholar
  2. Ashbumer, M., 1989. Drosophila, 434pp. in A Laboratory Handbook. Cold Spring Harbor Laboratory Press.Google Scholar
  3. Baba-Aissa, F. & M. Solignac, 1984. La plupart des populations de Drosophila simulans ont probablement pour ancêtre une femelle unique dans un passé récent. C. R. Acad. Sci. Paris 299, Ser III: 289–292.Google Scholar
  4. Baccetti, B., B.H. Gibbons & I.R. Gibbons, 1989. Bidirectional swimming in spermatozoa of tephritid flies.J. Submicrosc. Cytol. Pathol. 21: 619–625.PubMedGoogle Scholar
  5. Barbash, D.A., J. Roote & M. Ashburner, 2000. The Drosophila melanogaster Hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154: 1747–1771.PubMedGoogle Scholar
  6. Beatty, R.A. & N.S. Sidhu, 1967. Spermatozoan nucleus length in three strains of Drosophila melanogaster. Heredity 22: 65–82.PubMedCrossRefGoogle Scholar
  7. Beatty, R.A. & N.S. Sidhu, 1970. Polymegaly of spermatozoan length and its genetic control in Drosophila species. Proc. Roy. Soc. Edinb. Soc. B71: 14–28.Google Scholar
  8. Bircher, U. & E. Hauschteck-Jungen, 1997. The length of the sperm nucleus in Drosophila obscura group species is depending on the total length of the sperm. Invert. Reprod. Develop. 32: 225–229.CrossRefGoogle Scholar
  9. Bressac, C. & E. Hauschteck-Jungen, 1996. Drosophila subobscura females preferentially select long sperm for storage and use. J. Insect Physiol. 42: 323–328.CrossRefGoogle Scholar
  10. Bressac, C, D.Joly, J. Devaux & D. Lachaise, 199la. Can we predict the mating pattern of Drosophila females from the sperm length distribution in males? Experientia 47: 111–114.CrossRefGoogle Scholar
  11. Bressac, C, D.Joly, J. Devaux, C. Serres, D. Feneux & D. Lachaise, 1991b. Comparative kinetics of short and long sperm in sperm dimorphic Drosophila species. Cell Motility Cytoskel. 19: 269–274.CrossRefGoogle Scholar
  12. Briskie, J.V. & R. Montgomerie, 1992. Sperm size and sperm competition in birds. Proc. Roy. Soc. Lond. B 247: 89–95.CrossRefGoogle Scholar
  13. Briskie, J. V., R. Montgomerie & T.R. Birkhead, 1997. The evolution of sperm size in birds. Evolution 51: 937–945.Google Scholar
  14. Capy, P., J.R. David, Y. Carton, E. Pla & J. Stockel, 1987. Grape breeding Drosophila communities in southern France: short range variation in ecological and genetical structure of natural populations. Acta Oecol., Oecol. Gen. 8: 435–440.Google Scholar
  15. Capy, P., M. Veuille, M. Paillette, J.-M. Jallon, J. Vouidibio & J.R. David, 1999. Sexual isolation of genetically differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first step towards speciation? Heredity 84: 468–475.Google Scholar
  16. Cazemajor, M., D. Joly & C. Montchamp-Moreau, 2000. Sex-ratio meiotic drive in Drosophila simulans is related to equational nondisjunction of the Y chromosome. Genetics 154:229–236.PubMedGoogle Scholar
  17. Civetta, A., 1999. Direct visualization of sperm competition and sperm storage in Drosophila. Curr. Biol. 12: 841–844.CrossRefGoogle Scholar
  18. Civetta, A. &A.G. Clark, 2000. Chromosomal effects on male and female components of sperm precedence in Drosophila. Genet. Res. Camb. 75: 143–151.CrossRefGoogle Scholar
  19. Clark, A.G. & D.J. Begun, 1998. Female genotypes affect sperm displacement in Drosophila. Genetics 149: 1487–1493.PubMedGoogle Scholar
  20. Clark, A.G., M. Aguadé, T. Prout, L.G. Harshman & C.H. Langley, 1995.Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139: 189–201.PubMedGoogle Scholar
  21. Clark, A.G., D.J. Begun & T. Prout, 1999. Female x male interactions in Drosophila sperm competition. Science 283: 217–220.PubMedCrossRefGoogle Scholar
  22. Collins, A.M., 2000. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31: 421–429.CrossRefGoogle Scholar
  23. Coyne, J.A., 1992. Genetics and speciation. Nature 355: 511-515. Coyne, J.A. & H.A. Orr, 1998. The evolutionary genetics of speciation. Philos. Trans. Roy. Soc. B. 353:287–305.Google Scholar
  24. Dobzhansky, T., 1934.Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z. Zellforsch. Mikrosk. Anat. 21: 169–223.CrossRefGoogle Scholar
  25. Dobzhansky, T, 1937.Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  26. Gomendio, M. & E.R.S. Roldan, 1991.Sperm competition influences sperm size in mammals. Proc. Roy. Soc. Lond. B 243: 181–185.Google Scholar
  27. Gromko, M.H., D.G. Gilbert & R.C. Richmond, 1984. Sperm transfer and use in the multiple mating system of Drosophila, pp. 371-426 in Sperm Competition and the Evolution of Animal Mating Systems, edited by R.L. Smith. Academic Press, New York.Google Scholar
  28. Hanna, P.J.,W. Liebrich & O. Hess, 1982. Spermatocytes in Drosophila not appearing to be produced by synchronous divisions of definitive spermatogonia.Dros. Inf. Serv. 58: 72–73.Google Scholar
  29. Harry, M., E. Rashkovetsky, T. Pavlicek, B.S.E.M. Derzhavets, P. Capy, M.L. Cariou, D. Lachaise, N. Asada & E. Nevo, 1999. Fine-scale biodiversity of Drosophilidae in ‘Evolution Canyon’ at the Lower Nahal Oren microsite, Israel. Biol. Bratislava 54: 685–705.Google Scholar
  30. Hatsumi, M.&K.I. Wakahama, 1986. The sperm length and the testis length in Drosophila nasuta subgroup.Jpn. J. Genet. 61: 241–244.CrossRefGoogle Scholar
  31. Hihara, F. &H. Kurokawa, 1987. The sperm length and the internal reproductive organs of Drosophila with special references to phylogenetic relationships. Zool. Sci. 4: 167–174.Google Scholar
  32. Hosken, D.J., 1997. Sperm competition in bats. Proc. Roy. Soc. Lond. B 264: 385–392.Google Scholar
  33. Hunter, F.M.& T.R. Birkhead, 2002. Sperm viability and sperm competition in insects. Curr. Biol. 12: 121–123.Google Scholar
  34. Iliadi, K., N. Iliadi, E. Rashkovetsky, I. Minkov, E. Nevo & A. Korol, 2001. Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of ‘Evolution Canyon’ (Mount Carmel, Israel). Proc. Roy. Soc. Lond. B 268:2365–2374.Google Scholar
  35. Inoue, Y., T.K. Watanabe & M. Watada, 1990. Natural and laboratory hybridization between Drosophila melanogaster and Drosophila simulans. Jpn. J. Genet. 65: 47–51.Google Scholar
  36. Joly, D., 1987. Between species divergence of cyst length distributions in the Drosophila melanogaster species complex. Jpn. J. Genet. 62: 257–263.CrossRefGoogle Scholar
  37. Joly, D. & C. Bressac, 1994. Sperm length in Drosophilidae (Diptera): estimation by testis and receptacle length. Int. J. Insect Morphol. Embryol. 23: 85–92.Google Scholar
  38. Joly, D. & D. Lachaise, 1994. Polymorphism in the sperm heteromorphic species of the Drosophila obscura group. J. Insect Physiol. 40: 933–938.Google Scholar
  39. Joly, D., C. Bressac, J. Devaux & D. Lachaise, 1991. Sperm length diversity in Drosophilidae. Dros. Inf. Serv. 72: 104-108. Joly, D., M.-L. Cariou & D. Lachaise, 1991. Can sperm competition explain sperm polymorphism in Drosophila teissieri? Evol. Biol. 5: 25–44.Google Scholar
  40. Joly, D., C. Bressac & D. Lachaise, 1995. Disentangling giant sperm. Nature 377: 202.CrossRefGoogle Scholar
  41. Joly, D., C. Bazin, L.-W. Zeng & R.S. Sing, 1997. Genetic basis of sperm and testis length differences and epistatic effect on hybrid inviability and sperm motility between Drosophila simulans and Drosophila sechellia. Heredity 78: 354–362.Google Scholar
  42. Karr, T.L., 1991. Intracellular sperm/egg interactions in Drosophila: a three-dimensional structural analysis of a paternal product in the developing egg. Mech. Develop. 34: 101–112.Google Scholar
  43. Karr, T.L., 1996. Paternal investment and intracellular sperm-egg interactions during and following fertilization in Drosophila. Curr. Top. Dev. Biol. 34: 89–115.Google Scholar
  44. Karr, T.L. & S. Pitnick, 1996. The ins and outs of fertilization. Nature 379: 405–406.Google Scholar
  45. King, R.C. & J. Büning, 1985. The origin and functioning of insect oocytes and nurse cells, pp. 37-82 in Comprehensive Insect Physiology, Biochemistry and Pharmacology, edited by G.A.Google Scholar
  46. Kerkut & L.I. Gilbert. Pergamon Press, Oxford.Google Scholar
  47. Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin & E. Nevo, 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at ‘Evolution Canyon’. Proc. Natl. Acad. Sci. USA 97: 12637–12642.PubMedCrossRefGoogle Scholar
  48. Kurokawa, H. & F. Hihara, 1976. Number of first spermatocytes in relation to phylogeny of Drosophila (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 5: 51–63.Google Scholar
  49. Lachaise, D., J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1986. The reproductive relationships of Drosophila sechellia with D. mauritiana, D. simulons, and D. melanogaster from the afrotropical region. Evolution 40: 262–271.Google Scholar
  50. LaMunyon, C.W. & S. Ward, 1999.Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc. Roy. Soc. Lond. B 266: 263–267.CrossRefGoogle Scholar
  51. Lindsley, D.L. & K.T. Tokuyasu, 1980. Spermatogenesis, pp. 225-294 in The Genetics and Biology of Drosophila, edited by M. Ashburner & T.R.F. Wright. Academic Press, London. Lung, O. & M.F. Wolfner, 2001. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31: 543–551.Google Scholar
  52. Markow, T.A., 1982. Mating systems of cactophilic Drosophila, pp. 273-287 in Ecological Genetics and Evolution: the Cactus-Yeast-Drosophila Model, edited by J.S.F. Baker & W.T. Starmer. Academic Press, Australia, Oracle, Arizona, January 4–8.Google Scholar
  53. Markow, T.A., 1996. Evolution of Drosophila mating systems. Evol. Biol. 29: 73–106.Google Scholar
  54. Michalak, P., I. Minkow, A. Helin, D.N. Lerman, B.R. Bettencourt, M.E. Feder, A.B. Korol & E. Nevo, 2001. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in ‘Evolution Canyon’, Israel. Proc. Natl. Acad. Sci. USA 6: 13195–13200.CrossRefGoogle Scholar
  55. Morin, J.-P, B. Moreteau, G. Pétavy & J.R. David, 1999. Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J. Evol. Biol. 12: 329–339.CrossRefGoogle Scholar
  56. Morrow, E.H. & M.J.G. Gage, 2000. The evolution of sperm length in moths. Proc. Roy. Soc. Lond. B 267: 307–313.Google Scholar
  57. Morrow, E.H. & M.J.G. Gage,2001. Artificial selection and heritability of sperm length in Gryllus bimaculatus. Heredity 87: 356–362.PubMedCrossRefGoogle Scholar
  58. Nevo, E., 1995. Asian, African and European biota meet at ‘Evolution Canyon’ Israel: local tests of global diversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B B262: 149–155.CrossRefGoogle Scholar
  59. Nevo, E., 1997. Evolution in action across phylogeny caused by microclimatic stresses at ‘Evolution Canyon’. Theor. Pop. Biol. 52:231–243.Google Scholar
  60. Nevo, E., 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford University Press, New York.Google Scholar
  61. Nevo, E., 2001. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA 98: 6233–6240.PubMedCrossRefGoogle Scholar
  62. Nevo, E., E. Rashkovetsky, T. Pavlicek & A. Korol, 1998. A complex adaptive syndrome in Drosophila caused by microclimatic contrasts.Heredity 80: 9–16.PubMedCrossRefGoogle Scholar
  63. Otronen, M., P. Reguera & P.I. Ward, 1997. Sperm storage in the yellow dung fly Scathophaga stercoraria: identifying the sperm of competing males in separate female spermathecae. Ethology 103: 844-854.Google Scholar
  64. Peng, Y.S., S.J. Locke, M.E. Nasr, T.P. Liu & M.A. Montague, 1990. Differential staining for live and non viable sperm of honey bees. Physiol. Entomol. 15: 211-217.Google Scholar
  65. Perotti, M.E., 1969. Ultrastructure of the mature sperm of Drosophila melanogasterMeig. J. Submicr. Cytol. 1: 171–196.Google Scholar
  66. Pitnick, S., 1996. Investment in testes and the cost of making long sperm in Drosophila.Am. Natur. 148:57–80.CrossRefGoogle Scholar
  67. Pitnick, S. & G.T. Miller, 2000. Correlated response in reproductive and life history traits to selection on testis length in Drosophila hydei.Heredity 84:416–426.PubMedCrossRefGoogle Scholar
  68. Pitnick, S. & T.A. Markow, 1994a. Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc. Natl. Acad. Sci. USA 91: 9277-9281.Google Scholar
  69. Pitnick, S. & T.A. Markow, 1994b. Male gametic strategies: sperm size, testes size, and the allocation of ejaculate among successive mates by the sperm-limited fly Drosophila pachea and its relatives. Am. Natur. 143: 785–819.CrossRefGoogle Scholar
  70. Pitnick, S., T.A. Markow & G.S. Spicer, 1995. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc. Natl. Acad. Sci. USA 92: 10614–10618.PubMedCrossRefGoogle Scholar
  71. Pitnick, S., G.S. Spicer & T.A. Markow, 1995. How long is a giant sperm? Nature 375: 109.CrossRefGoogle Scholar
  72. Prout, T. & J. Bundgaard, 1977. The population genetics of sperm displacement. Genetics 85: 95–124.Google Scholar
  73. Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.Google Scholar
  74. Roldan, E.R.S., M. Gomendio & A.D. Vitullo, 1992. The evolution of eutherian spermatozoa and underlying selective forces: female selection and sperm competition. Biol. Rev. 67: 551–593.PubMedCrossRefGoogle Scholar
  75. Sanger, W.G. & D. Miller, 1973. Spermatozoan length in species of the Drosophila affinis subgroup. Am. Midl. Nat. 90: 485–489.CrossRefGoogle Scholar
  76. Solignac, M. & M. Monnerot, 1986. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J. Mol. Evol. 23: 31–40.PubMedCrossRefGoogle Scholar
  77. Sperlich, D., 1962. Hybrids between Drosophila melanogaster and Drosophila simulans in nature. Dros. Inf. Serv. 36: 118.Google Scholar
  78. Thoday, J.M. & J.B. Gibson, 1962. Isolation by disruptive selection. Nature 193: 1164–1166.PubMedCrossRefGoogle Scholar
  79. Tracey, M.L., O.A. Pavlovsky & M.M. Green, 1973. Hybridization of D. melanogaster and D. simulans. A frequency estimate. Dros. Inf. Serv. 50: 77.Google Scholar
  80. Ward, P.I., 1998. Intraspecific variation in sperm size characters. Heredity 80: 655–659.Google Scholar
  81. Ward, PL, 2000. Sperm length is heritable and sex-linked in the yellow dung fly Scathophaga stercoraria (L.). J. Zool. 251: 349–353.CrossRefGoogle Scholar
  82. Ward, P.I. & E. Hauschteck-Jungen, 1993. Variation in sperm length in the yellow dung fly Scathophaga stercoraria (L.). J. Insect Physiol. 39: 545–547.CrossRefGoogle Scholar
  83. Watanabe, T.K., 1979. A gene that rescues the lethal hybrid between Drosophila melanogaster and Drosophila simulans. Jpn.J. Genet. 54:325–331.CrossRefGoogle Scholar
  84. Woolley, D.M., 1970. Selection for the length of the spermatozoan midpiece in the mouse. Genet.Res. Camb. 16: 261–275.CrossRefGoogle Scholar
  85. Yanders, A.F. & J.P. Petras, 1963. Sperm length in four Drosophila species, corrected.Dros. Inf. Serv. 38: 145.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Dominique Joly
    • 1
  • Abraham Korol
    • 2
  • Eviatar Nevo
    • 2
  1. 1.Populations, Génétique et EvolutionGif sur Yvette CedexFrance
  2. 2.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations