Advertisement

A mutation in Drosophila simulans that lengthens the circadian period of locomotor activity

  • A. S. Rogers
  • Stefan A. Escher
  • C. Pasetto
  • E. Rosato
  • R. Costa
  • C. P. Kyriacou
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 11)

Abstract

The length of the Thr-Gly repeat within the period gene of Drosophilids, coevolves with its immediate flanking region to maintain the temperature compensation of the fly circadian clock. In Drosophila simulans, balancing selection appears to maintain a polymorphism in this region, with three repeat lengths carrying 23, 24 or 25 Thr-Gly pairs, each in complete linkage disequilibrium with a distinctive flanking region amino acid moiety. We wondered whether separating a specific length repeat from its associated flanking haplotype might have functional implications for the circadian clock. We fortuitously discovered a population of flies collected in Kenya, in which a chimeric Thr-Gly haplotype was segregating that carried the (Thr-Gly) 24 repeat, but the flanking region of a (ThrGly) 23 allele. One of the five isofemale lines that carried this ‘mutant’ Thr-Gly sequence showed a dramatically long and temperature-sensitive free-running circadian period. This phenotype was mapped to the X chromosome, close to the D. simulans per gene, but there was also a significant effect of a modifying autosomal locus or loci. It seems remarkable that such a mutant phenotype should be discovered in a screen of chimeric Thr-Gly regions.

Key words

circadian coevolution locomotor activity modifiers mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, S., J. Ringo, B. Talyn, W. Bray & H. Dowse, 1998. The period gene controls courtship song cycles in Drosophila melanogaster. Anim. Behav. 56: 87–97.PubMedCrossRefGoogle Scholar
  2. Costa, R. & C.R Kyriacou, 1998. Functional and evolutionary implications of natural variation in clock genes. Curr. Ops. Neurobiol. 8:659–664.CrossRefGoogle Scholar
  3. Costa, R., A.A. Peixoto, J.R. Thackeray, R. Dalgleish & C.R Kyriacou, 1991. Length polymorphism in the Threonine-Glycine encoding repeat region of the period gene in Drosophila. J. Mol. Evol. 32: 238–246.PubMedCrossRefGoogle Scholar
  4. Curtin, K.D., Z.J. Huang & M. Rosbash, 1995. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14: 365–372.PubMedCrossRefGoogle Scholar
  5. Dover, G.A. & R.B. Flavell, 1984.Molecular coevolution: DNA divergence and maintenance of function. Cell 38: 622-623.Google Scholar
  6. Hamblen-Coyle, M.J., D.A. Wheeler, J.E. Rutila, M. Rosbash & J.C. Hall, 1992.J. Insect Behav. 5: 417–446.CrossRefGoogle Scholar
  7. Hancock, J.M. & G.A. Dover, 1990. Compensatory slippage in the evolution of ribosomal RNA genes. NAR 18: 5949-5954.Google Scholar
  8. Konopka, R. & S. Benzer, 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 68: 2112-2116.Google Scholar
  9. Kyriacou, C.P. & J.C. Hall, 1980. Circadian rhythm mutations in Drosophila affect short-term fluctuations in the male’s courtship song. Proc. Natl. Acad. Sci. USA. 77: 6729–6733. Kyriacou, C.P. & J.C. Hall, 1989. Spectral analysis of Drosophila courtship songs. Anim. Behav. 37: 850-859. Kyriacou, C.P., M. Oldroyd, J. Wood, M. Sharp & M. Hill, 1990. Clock mutations alter developmental timing in Drosophila. Heredity 64: 395-401.Google Scholar
  10. Majercak, J., D. Sidote, P.E. Hardin & I. Edery, 1999. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24: 219–230.Google Scholar
  11. Nielsen, J., A.A. Peixoto, A. Piccin, R. Costa, C.P. Kyriacou & D. Chalmers, 1994. Big flies, small repeats: the ‘Thr-Gly’ region of the period gene in Diptera. Mol. Biol. Evol. 11:839–853.Google Scholar
  12. Peixoto, A.A., S. Campesan, R. Costa & C.P. Kyriacou, 1993. Molecular evolution of a repetitive region within the per gene of Drosophila. Mol. Biol. Evol. 10: 127-139.Google Scholar
  13. Peixoto, A.A., R. Costa, D.A. Wheeler, J.C. Hall & C.P. Kyriacou, 1992. Evolution of the Threonine-Glycine Repeat region of the period Gene in the melanogaster species subgroup of Drosophila. J. Mol. Evol. 35: 411-419.Google Scholar
  14. Peixoto, A.A., M. Hennessey, I. Townson, G. Hasan, M. Rosbash, R. Costa & C.P. Kyriacou, 1998. Molecular coevolution within a clock gene in Drosophila. Proc. Natl. Acad. Sci. USA. 95: 4475-4480.Google Scholar
  15. Petersen, G., J.C. Hall & M. Rosbash, 1988. The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 7: 3939-3947.Google Scholar
  16. Ritchie, M.G., E.J. Halsey & J.M. Gleason, 1999. Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Anim. Behav. 58: 649-657.Google Scholar
  17. Rogers, A.S., E. Rosato, R. Costa & C.P. Kyriacou, (20041 Molecular analysis of circadian clocks in Drosophila simulans. Genetica 120:213-222.Google Scholar
  18. Rosato, E., A. Gallippi, A.A. Peixoto, C.P. Kyriacou & R. Costa, 1996. Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster. J. Mol. Evol. 42: 392-408.Google Scholar
  19. Rosato, E., A.A. Peixoto, G. Barbujani, R. Costa & C.P. Kyriacou, 1994. Molecular evolution of the period gene in Drosophila simulans. Genetics, 138: 693-707.Google Scholar
  20. Rosato, E., A.A. Peixoto, R. Costa & C.P. Kyriacou, 1997. Mutation rate, linkage disequilibrium, and selection in the repetitive region of the period gene in Drosophila melanogaster. Genet. Res. 69: 89-99.Google Scholar
  21. Rothenfluh, A., M. Abodeely & M.W. Young, 2000. Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock. Curr. Biol. 10: 1399-1402.Google Scholar
  22. Rutila, J.E., H.K. Zeng, M. Le, K.D. Curtin, J.C. Hall & M. Rosbash, 1996. The tim SL mutant of the Drosophila rhvthm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17: 921-929.Google Scholar
  23. Sawyer, L., M. Hennessey, A.A. Peixoto, E. Rosato, H. Parkinson, R. Costa & C.P. Kyriacou, 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science 278: 2117-2120.Google Scholar
  24. Wheeler, D.A., C.P. Kyriacou, M.L. Greenacre, Q. Yu, J.E. Rutila, M. Rosbash & J.C. Hall, 1991. Molecular transfer of a species-specific courtship behaviour from Drosophila simulans to Drosophila melanogaster. Science 251: 1082-1085.Google Scholar
  25. Young, M.W. & S.A. Kay, 2001. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2: 702-715.Google Scholar
  26. Yu, Q., H.V. Colot, C.P. Kyriacou, J.C. Hall & M. Rosbash, 1987. Behavior modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326: 765-769.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • A. S. Rogers
    • 1
  • Stefan A. Escher
    • 3
  • C. Pasetto
    • 1
    • 2
  • E. Rosato
    • 4
  • R. Costa
    • 2
  • C. P. Kyriacou
    • 1
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterUK
  2. 2.Department of BiologyUniversity of PadovaPadovaItaly
  3. 3.Department of GeneticsUmea UniversityUmeaSweden
  4. 4.Department of BiologyUniversity of LeicesterLeicesterUK

Personalised recommendations