Skip to main content

Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans

  • Chapter
Drosophila melanogaster, Drosophila simulans: So Similar, So Different

Abstract

Numerous laboratory investigations have compared Drosophila melanogaster and D. simulans for various life history traits and fitness related ecophysiological parameters. From presently available information, it is however difficult to get a general comparative pattern describing the divergence of their ecological niches and understanding their demographic success. Two environmental factors seem however to have played a major role: temperature and alcoholic resources. From an ecophysiological approach, D. simulans may be described as generally more sensitive to stresses; other results point to this species as more cold adapted than its sibling; in some cases, however, D. simulans may appear as better adapted to a warm environment. When investigated, ecophysiological traits show a lesser geographic variability in D. simulans than in D. melanogaster. Presently available information does not explain the ecological prevalence of D. simulans in many places with a mild temperate or subtropical climate. This is presumably due to the fact that most comparisons have been done at a single, standard temperature of 25°C. Comparative studies should be undertaken, spanning the thermal ranges of the two species, and the phenotypic plasticity of ecophysiological traits should now be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand, R., 1982. Physiological tolerance of Drosophila simulans to dark environment: a comparison with Drosophila melanogaster. J. Insect Physiol. 28: 767-772.

    Google Scholar 

  • Allemand, R. & J.R. David, 1976. The circadian rhythm of oviposition in Drosophila melanogaster. a genetic latitudinal cline in wild populations. Experientia 32: 1403-1404.

    Google Scholar 

  • Allemand, R., Y. Cohet & O. Savolainen, 1976. Effects of different light regimens on the egg production and egg hatchability of Drosophila melanogaster adults. Acta Ent. Bohemoslovaca 73: 76-85.

    Google Scholar 

  • Bouletreau, M., P. Fouillet & D. Sillans, 1984. Differential sensitivity of Drosophila melanogaster and Drosophila simulans to chronic exposure to carbon dioxide during development. Experientia 40: 566-567.

    Google Scholar 

  • Bouletreau-Merle, J. & D. Sillans, 1996. Effects of interaction between temperature and CO2 on life-history traits of two Drosophila species (Diptera: Drosophilidae). Eur. J. Ent. 93: 451-159.

    Google Scholar 

  • Boulétreau-Merle, J., R. Allemand, Y. Cohet & J.R. David, 1982. Reproductive strategy in Drosophila melanogaster. signification of a divergence between temperate and tropical populations. Oecologia (Berl.) 53: 323-329.

    Google Scholar 

  • Briere, J.F., P. Pracros, A.Y Le Roux & J.S. Pierre, 1999. A novel rate model of temperature-dependent development for Arthropods. Environ. Entomol. 28: 22-29.

    Google Scholar 

  • Capy, P., E. Pla & J.R. David, 1993. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations. Genet. Sel. Evol. 25:517-536.

    Google Scholar 

  • Chakir, M,O. Peridy, P. Capy, E. Pla & J.R. David, 1993. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid. Proc. Natl. Acad. Sci. USA 90: 3621-3625.

    Google Scholar 

  • Chakir, M., B. Moreteau, E. Pla, A. Alonso-Moraga & J.R. David, 1995. Drosophila hydei, a fourth Drosophila species linked to man-made resources with a high ethanol content. Evol. Biol., Bogota 8-9: 149-156.

    Google Scholar 

  • Chakir, M., P. Capy, J. Genermont & E. Pla, 1996. Adaptation to fermenting resources in Drosophila melanogaster: ethanol and acetic acid tolerances share a common genetic basis. Evolution 50: 767-776.

    Google Scholar 

  • Chakir, M., A. Chafik, B. Moreteau, P. Gibert & J.R. David, 2002. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114: 195-205.

    Google Scholar 

  • Chippindale, A.K. & W.R. Rice, 2001. Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 5677-5682.

    Google Scholar 

  • Chippindale, A.K., T.J.F. Chu & M.R. Rose, 1996. Complex tradeoffs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50: 753-766.

    Google Scholar 

  • Cohan, F.M. & A.A. Hoffmann, 1989. Uniform selection as a diversifying force in evolution: evidence from Drosophila. Am. Nat. 134: 613-637.

    Google Scholar 

  • Cohet, Y, 1973. Sterilite male provoquee par une basse temperature de developpement chez Drosophila melanogaster. C. R. Acad. Sci., Paris 276: 3343-3345.

    Google Scholar 

  • Cohet, Y. & J.R. David, 1980. Geographic divergence and sexual behaviour: comparison of mating systems in French and Afrotropical Drosophila melanogaster. Genetica 54: 161-165.

    Google Scholar 

  • David, J., 1970. Le nombre d’ovarioles chez Drosophila melanogaster: relation avec la fecondite et valeur adaptative. Arch. Zool. Exp. Gen. 111: 357-370.

    Google Scholar 

  • David, J. & C. Bocquet, 1975. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 257: 588-590.

    Google Scholar 

  • David, J.R. & O. Kitagawa, 1982. Possible similarities in ethanol tolerance and latitudinal variations between Drosophila virilis and D. melanogaster. Jpn. J. Genet. 57: 89-95.

    Google Scholar 

  • David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. TIG 4: 106-111.

    Google Scholar 

  • David, J., M.F. Arens & Y. Cohet, 1971. Stérilité male à haute temperature chez Drosophila melanogaster: nature, progressivité, reversibilité des effets de la chaleur. C. R. Acad. Sci., Paris 272: 1007-1010.

    Google Scholar 

  • David, J., C. Biémont & P. Fouillet, 1974. Life time egg production curves in Drosophila melanogaster and their adjustment to mathematical models. Arch. Zool. Exp. Gen. 115: 263-277.

    Google Scholar 

  • David, J., Y. Cohet & P. Fouillet, 1975a. Physiologie de l’inanition et utilisation des reserves chez les adultes de Drosophila melanogaster. Arch. Zool. Exp. Gen. 116: 579-590.

    Google Scholar 

  • David, J., Y Cohet & P. Fouillet, 1975b. La résistance à l’inanition chez les insectes: importance de la quantité des reserves lipidiques chez les adultes de D. melanogaster. C. R. Acad. Sci., Paris 280: 2571-2574.

    Google Scholar 

  • David, J., C. Bocquet, P. Fouillet & M.T. Arens, 1977. Tolérance génétique à l’alcool chez Drosophila: comparison des effets de la sélection chez D. melanogaster et D. simulans. C. R. Acad. Sci., Paris 285: 405-408.

    Google Scholar 

  • David, J.R., R. Allemand, J. van Herrewege & Y Cohet, 1983. Ecophysiology: abiotic factors, pp. 105-170 in Genetics and biology of Drosophila, Vol. 3d, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Academic Press, New York. David, J.R., P. Gibert, E. Pla, G. Pétavy, D. Karan & B. Moreteau, 1998. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. Therm. Biol. 23: 291-299.

    Google Scholar 

  • Futuyama, Y.& M. Watada, 1981. The microdistribution of Drosophila melanogaster and Drosophila simulans: a survey in the Bonin islands. Zool. Mag. (Tokyo) 90: 62-68.

    Google Scholar 

  • Gibert, P., B. Moreteau, E. Pla, G. Pétavy, D. Karan & J.R. David, 2001. Chill coma tolerance: a major climatic adaptation among Drosophila species. Evolution 55: 1063-1068.

    Google Scholar 

  • Gibert, P., P. Capy, A. Imasheva, B. Moreteau, J.P. Morin, G. Pétavy & J.R. David, 2004. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica 120: 165-179.

    Google Scholar 

  • Gravot, E., 2000. Interactions entre la pourriture acide de la vigne et les populations de drosophiles dans la région Bordelaise. Thèse de Doctorat, Université Paris VI, 100 pp.

    Google Scholar 

  • Hoffmann, A.A.& P.A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford.

    Google Scholar 

  • Hoffmann, A.A. & P.A. Parsons, 1993. Direct and correlated responses to selection for desiccation resistance: a comparison of Drosophila melanogaster and D. simulons. J. Evol. Biol. 6: 643-657.

    Google Scholar 

  • Hoffmann, A.A. & P.A. Parsons, 1997. Extreme Environmental Change and Evolution. Cambridge University Press, Cambridge. Hoffmann, A.A. & M. Watson, 1993. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142: S93-S113.

    Google Scholar 

  • Hoffmann, A.A., R. Hallas, C. Sinclair & P. Mitrovski, 2001. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desicca-tion, starvation, cold resistance, and associated traits. Evolution 55: 1621-1630.

    Google Scholar 

  • Jenkins, N.L. & A.A. Hoffmann, 1994. Genetic and maternal vari-ation for heat resistance in Drosophila from the field. Genetics 137: 783-789.

    Google Scholar 

  • Jutier, D., N. Derome & C. Montchamp-Moreau, 2004. The sex-ratio trait and its evolution in Drosophila simulans: a compara-tive approach. Genetica 120: 87-99.

    Google Scholar 

  • Karan, D.& J.R. David, 2000. Cold tolerance in Drosophila: ad-aptive variations revealed by the analysis of starvation survival reaction norms. J. Therm. Biol. 25: 345-351.

    Google Scholar 

  • Karan, D.& R. Parkash, 1998. Desiccation tolerance and star-vation resistance exhibit opposite latitudinal clines in Indian geographical populations of Drosophila kikkawai. Ecol. Ent. 23: 391-396.

    Google Scholar 

  • Karan, D.,N. Dahiya, A.K. Munjal, P. Gibert, B. Moreteau, R. Parkash & J.R. David, 1997. Desiccation and starvation toler-ance of adult Drosophila: opposite latitudinal clines in natural populations of three different species. Evolution 52: 825-831.

    Google Scholar 

  • Kawanishi, M.& T.K. Watanabe, 1978. Ecological factors con-trolling the coexistence of Drosophila simulans and Drosophila melanogaster. Rep. Nat. Inst. Genet., Mishima 28: 110-111.

    Google Scholar 

  • Lachaise, D. & J.F. Silvain, 2004. How two Afrotropical endem-ics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120: 17-39.

    Google Scholar 

  • Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M Ashbumer, 1988. Historical biogeography of Vas Drosophila melanogaster species subgroup. Evol. Biol. 22: 159-225.

    Google Scholar 

  • Louis, J. 1983. Les espèces dominantes de Drosophila dans les peuplements de l’Europe atlantique et méditerranéenne (Dipt., Drosophilidae). Annls Soc. ent. Fr. 19: 167-173.

    Google Scholar 

  • McKenzie, J.A. & P.A. Parsons, 1972. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia (Berlin) 10: 373-388.

    Google Scholar 

  • McKenzie, J.A. & P.A. Parsons, 1974a. The genetic architec-ture of resistance to desiccation in populations of Drosophila melanogaster and Drosophila simulans. Aust. J. Biol. Sei. 27: 441-156.

    Google Scholar 

  • McKenzie, J.A. & P.A. Parsons, 1974b. Numerical changes and environmental utilization in natural population of Drosophila. Aust. J. Zool. 22: 175-187.

    Google Scholar 

  • Montchamp-Moreau, C, 1983. Interspecific competition between Drosophila melanogaster and Drosophila simulans: temperature effect of competitive ability and fitness components. Genet. Sel. Evol. 15: 367-378.

    Google Scholar 

  • Morin, J.P., B. Moreteau, G. Pétavy, A.G. Imasheva & J.R. David, 1996. Body size and developmental temperature in Drosophila simulans: comparison of reaction norms with sympatric Drosophila melanogaster. Genet. Sel. Evol. 28: 415-436.

    Google Scholar 

  • Morin, J.P., B. Moreteau, G. Pétavy & J.R. David, 1999. Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J. Evol. Biol. 12:329-339.

    Google Scholar 

  • Nielsen, K.M. & A.A. Hoffmann, 1985. Numerical changes and resource utilization in orchard populations of Drosophila. Aust. J. Zool. 33: 875-884.

    Google Scholar 

  • Parkash, R. & V. Vandna, 1995. Ethanol and acetic acid utilisation in colonizing populations of Drosophila jambulina and Drosophila kikkawai. Evoluc. Biol. 8-9: 97-106.

    Google Scholar 

  • Parkash, R., Neena & Shamina, 1993. Ethanol and acetic acid tolerance in three sibling species of melanogaster species subgroup. Evoluc. Biol. 7: 291-301.

    Google Scholar 

  • Parsons, P.A., 1975. The comparative evolutionary biology of the sibling species, Drosophila melanogaster and Drosophila simulans. Q. Rev. Biol. 50: 151-169.

    Google Scholar 

  • Parsons, P.A., 1983. The Evolutionary Biology of Colonizing Species. Cambridge University Press, Cambridge.

    Google Scholar 

  • Parsons, P.A. & S.M. Stanley, 1981. Domesticated and widespread species. Ashburner, Carson, Thompson, 1981-1986: 349-393.

    Google Scholar 

  • Pétavy, G., J.P. Morin, B. Moreteau & J.R. David, 1997. Growth temperature and phenotypic plasticity in two Drosophila sibling species: probable adaptive changes in flight capacities. J. Evol. Biol. 10: 875-887.

    Google Scholar 

  • Pétavy, G., J.R. David, P. Gibert & B. Moreteau, 200la. Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes. J. Therm. Biol. 26: 29-39.

    Google Scholar 

  • Pétavy, G., B. Moreteau, P. Gibert, J.P. Morin & J.R. David, 2001b. Phenotypic plasticity of body size in Drosophila: effects of a daily periodicity of growth temperature in two sibling species. Physiol. Entomol. 26: 351-361.

    Google Scholar 

  • Pétavy, G., B. Moreteau, P. Gibert & J.R. David, 2002. Phenotypic plasticity of body pigmentation in Drosophila: influence of a developmental thermoperiodic regime in two sibling species. Physiol. Entomol. 27: 124-135.

    Google Scholar 

  • Prince, G.J. & P.A Parsons, 1977. Adaptive behaviour ofDrosophila adults in relation to temperature and humidity. Aust. J. Zool. 25: 285-290.

    Google Scholar 

  • Rice, W.R., 1998. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc. Natl. Acad. Sci. USA 95: 6217-6221.

    Google Scholar 

  • R’Kha, S., B. Moreteau, J.A. Coyne & J.R. David, 1997. Evolution of a lesser fitness trait: egg production in the specialist Drosophila sechellia. Genet. Res. Camb. 69: 17-23.

    Google Scholar 

  • Robinson, S.J.W., B. Zwaan & L. Partridge, 2000. Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster. Evolution 54: 1819-1824.

    Google Scholar 

  • Rouault, J. & J.R. David, 1982. Evolutionary biology of Drosophila melanogaster and Drosophila simulans: a behavioural divergence in microhabitat selection. Acta Oecol., Oecol. Genet. 3: 331-338.

    Google Scholar 

  • Stalker, H.D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95:211-223.

    Google Scholar 

  • Tantawy, A.O. & M.H. Soliman, 1967. Studies on natural populations of Drosophila. 6. Competition between Drosophila melanogaster and D. simulans. Evolution 21: 34-40.

    Google Scholar 

  • van Delden, W.,1982. The alcohol dehydrogenase polymorphism in Drosophila melanogaster. selection at an enzyme locus. Evol. Biol. 15: 187-222.

    Google Scholar 

  • van Herrewege, J. & J.R. David, 1997. Starvation and desiccation in Drosophila: Comparison of species from different climatic origins. Ecoscience 4: 151-157.

    Google Scholar 

  • Watson, M.J.O. & A.A. Hoffmann, 1996. Acclimation, cross-generation effects, and the response to selection for increased cold resistance in Drosophila. Evolution 50: 1182-1192.

    Google Scholar 

  • Yamamoto, A. & S. Ohba, 1984a. Temperature preferences of eleven Drosophila species from Japan: the relationship between preferred temperature and some ecological characteristics in their natural habitats. Zool. Sci. 1: 631-640.

    Google Scholar 

  • Yamamoto, A. & S. Ohba, 1984b. Heat and cold resistances of sixteen Drosophila species from Japan in relation to their field ecology. Zool. Sci. 1: 641-652.

    Google Scholar 

  • Yamamoto, A., Y. Fuyama & M. Watada, 1985. Habitat selection of two sibling species, Drosophila melanogaster and D. simulans: a further survey in the Bonin islands. Zool. Sci. 2: 265-270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Capy P. Gibert I. Boussy

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

David, J.R. et al. (2004). Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans . In: Capy, P., Gibert, P., Boussy, I. (eds) Drosophila melanogaster, Drosophila simulans: So Similar, So Different. Contemporary Issues in Genetics and Evolution, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0965-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0965-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3755-6

  • Online ISBN: 978-94-007-0965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics