Skip to main content

On the Motivic π0 of the Sphere Spectrum

  • Conference paper
Axiomatic, Enriched and Motivic Homotopy Theory

Part of the book series: NATO Science Series ((NAII,volume 131))

Abstract

Let d ≥ 1 and X a pointed topological space. We denote as usual by π d (X) the d-th homotopy group of X. One of the starting point in homotopy theory is the following result: Theorem 1.1.1. Let n > 0 be any integer. 1) If d < n then π d (S n) = 0; 2) If d = n then π n (S n) = ℤ ; 2) (Serre) If d > n then π d (S N) is a finite group unless n is even and d = 2n - 1 in which case it a direct sum ofand a finite group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arason and R. Elman, “Powers of the fundamental ideal in the Witt ring.” J. Algebra 239 (2001), no. 1, 150–160.

    Article  MathSciNet  MATH  Google Scholar 

  2. P.Balmer “Triangular Witt groups II” Math. Z. 236 (2001), 351–382.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Barge et F. Morel, Cohomologie des groupes linéaires, K-théorie de Milnor et groupes de Witt, C.R. Acad. Sci. Paris, t. 328, Série I, p. 191–196, 1999.

    Google Scholar 

  4. A.A. Beilinson; J. Bernstein; P. Deligne, Faisceaux pervers, (French) [Perverse sheaves] Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astrisque, 100, Soc. Math. France, Paris, 1982.

    Google Scholar 

  5. A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, pp. 80–130, Lecture Notes in Math., 658, Springer, Berlin, 1978.

    Book  Google Scholar 

  6. J. Hornbostel “A1-representability of Hermitian K-theory and Witt groups.” Preprint (2002), http://www.math.uiuc.edu/K-theory/0578//K-theory/0578/.

  7. P. Hu, S-modules in the category of schemes, preprint. http://www.math.uiuc.edu/K-theory/0396//K-theory/0396/.

  8. P. Hu and I. Kriz, “The Steinberg relation in A1-stable homotopy.” Internat. Math. Res. Notices 2001, no. 17, 907–912.

    Article  MathSciNet  Google Scholar 

  9. J.F. Jardine, Simplicial presheaves. J. Pure Appl. Algebra 47 (1987), no. 1, 35–87.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. F. Jardine, “Motivic symmetric spectra”, Doc. Math. 5 (2000), 445–553.

    MathSciNet  MATH  Google Scholar 

  11. M. Levine, Algebraic cobordism II, preprint. http://www.math.uiuc.edu/K-theory/0577//K-theory/0577/.

  12. M. Levine and F. Morel, Cobordisme algébrique I & II, Janvier 2001, Notes aux C.R.A.S. t. 332, Serie I, p. 723–728 et p 815-820, 2001.Notes aux C.R.A.S.

    Google Scholar 

  13. M. Levine and F. Morel, Algebraic cobordism I, preprint, http://www.math.uiuc.edu/K-theory/0547//K-theory/0547/

  14. H. Lindel, “On the Bass-Quillen conjecture concerning projective modules over polynomial rings.” Inventiones Math. 65 (1981/82) 319–323

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Milnor, Algebraic K-theory and quadratic forms. Invent. Math. 9 1969/1970 318–344.

    Article  MathSciNet  Google Scholar 

  16. F. Morel, Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques, C.R. Acad. Sci. Paris, t. 328, Série I, p. 963–968, 1999.

    Google Scholar 

  17. F. Morel, Sur les puissances de l’ideal fondamental de l’anneau de Witt, preprint, available at http://www.math.jussieu.fr/~morel/listepublications.html/~morel/listepublications.html.

  18. F. Morel, Suites spectrale d’Adams et conjectures de Milnor, en préparation.

    Google Scholar 

  19. F. Morel, The stable A1-connectivity theorems, preprint, available at http://www.math.jussieu.fr/~morel/listepublications.html/~morel/listepublications.html.

  20. F. Morel, The motivic π0 of the sphere spectrum, in preparation.

    Google Scholar 

  21. F. Morel, Rationalized motivic sphere spectrum and rational motivic cohomology, in preparation.

    Google Scholar 

  22. F. Morel, A1-derived category, mixed motives and the stable Hurewicz theorem, in preparation.

    Google Scholar 

  23. F. Morel, An introduction to A1-homotopy theory, Lectures given at the ICTP Trieste summer school, July 2002. To appear. Available at http://www.math.jussieu.fr/~morel/listepublications.html/~morel/listepublications.html.

  24. F. Morel and V. Voevodsky “A1-homotopy theory of schemes.” Inst. Hautes études Sci. Publ. Math. No. 90 (1999), 45–143 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), 241–342, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 279, Kluwer Acad. Publ., Dordrecht, 1989.

    Google Scholar 

  26. D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, http://www.math.uiuc.edu/K-theory/0454//K-theory/0454/.

  27. M. Rost, Chow groups with coefficients. Doc. Math. 1 (1996), No. 16, 319–393 (electronic).

    MathSciNet  MATH  Google Scholar 

  28. W. Scharlau “Quadratic and Hermitian forms.” Grundlehren der Mathematischen Wissenschaften, 270 Springer-Verlag, Berlin, 1985. x+421 pp.

    Google Scholar 

  29. V. Voevodsky. The A1-homotopy theory. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I, 579–604 (electronic).

    Google Scholar 

  30. V. Voevodsky, On 2-torsion in motivic cohomology, preprint, http://www.math.uiuc.edu/K-theory/0502//K-theory/0502/.

  31. V. Voevodsky, Cancellation theorem, preprint, http://www.math.uiuc.edu/K-theory/0541//K-theory/0541/.

  32. V. Voevodsky, A. Suslin and E. Friedlander “Cycles, transfers, and motivic homology theories.” Annals of Mathematics Studies, 143. Princeton University Press, Princeton, NJ, 2000. vi+254 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Morel, F. (2004). On the Motivic π0 of the Sphere Spectrum. In: Greenlees, J.P.C. (eds) Axiomatic, Enriched and Motivic Homotopy Theory. NATO Science Series, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0948-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0948-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1834-3

  • Online ISBN: 978-94-007-0948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics