Skip to main content

Deciphering Biofilm Structure and Reactivity by Multiscale Time-Resolved Fluorescence Analysis

  • Chapter
  • First Online:
Bacterial Adhesion

Abstract

In natural, industrial and medical environments, microorganisms mainly live as structured and organised matrix-encased communities known as biofilms. In these communities, microorganisms demonstrate coordinated behaviour and are able to perform specific functions such as dramatic resistance to antimicrobials, which potentially lead to major public health and industrial problems. It is now recognised that the appearance of such specific biofilm functions is intimately related to the three-dimensional organisation of the biological edifice, and results from multifactorial processes. During the last decade, the emergence of innovative optical microscopy techniques such as confocal laser scanning microscopy in combination with fluorescent labelling has radically transformed imaging in biofilm research, giving the possibility to investigate non-invasively the dynamic mechanisms of formation and reactivity of these biostructures. In this chapter, we discuss the contribution of fluorescence analysis and imaging to the study at different timescales of various processes: biofilm development (hours to days), antimicrobial reactivity within the three-dimensional structure (minutes to hours) or molecular diffusion/reaction phenomena (pico- to milliseconds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour M, Suntres ZE, Lafrenie RM, Omri A (2010) Attenuation of Pseudomonas aeruginosa virulence factor and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J Antimicrob Chemother 65:684–693

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Anderson GG, O’Tolle GA (2008) Innate and Induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    Article  PubMed  CAS  Google Scholar 

  • Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726

    Article  PubMed  CAS  Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8:157–168

    PubMed  CAS  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674

    Article  PubMed  CAS  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Briandet R, Lacroix-Gueu P, Lecart S, Renault M, Meylheuc T, Bidnenko E, Bellon-Fontaine M-N, Fontaine-Aupart M-P (2008) Fluorescence correlation spectroscopy to study diffusion-reaction of bacteriophages inside bacterial biofilms. Appl Environ Microbiol 74:2135–2143

    Article  PubMed  CAS  Google Scholar 

  • Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70

    Article  PubMed  CAS  Google Scholar 

  • Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interaction between biocide cationic agents and bacterila biofilms. Antimicrob Agent Chemother 46:1469–1474

    Article  CAS  Google Scholar 

  • Conchello J-A, Litchman J (2005) Optical sectioning microscopy. Nat Methods 2:920–931

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms, a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Cournet A, Delia M-L, Bergel A, Roques C, Bergé M (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12: 505–508

    Article  CAS  Google Scholar 

  • Deniset-Besseau A, Lévêque-Fort S, Fontaine-Aupart M-P, Roger G, Georges P (2007) Three-dimensional time-resolved imaging by multifocal multiphoton microscopy for a photosensitizer in living cells. Appl Optics 46:8045–8051

    Article  CAS  Google Scholar 

  • Dunny GM, Brickman TJ, Dworkin M (2008) Multicellular behavior in bacteria communication, cooperation, competition and cheating. BioEssays 30:296–298

    Article  PubMed  Google Scholar 

  • Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182

    Article  PubMed  CAS  Google Scholar 

  • Guiot E, Enescu M, Arrio B, Johannin G, Roger G, Tosti S, Tfibel F, Mérola F, Brun A, Georges P, Fontaine-Aupart MP (2000) Molecular dynamics of biological probes by fluorescence correlation microscopy with two-photon excitation. J Fluoresc 10:413–419

    Article  CAS  Google Scholar 

  • Guiot E, Georges P, Brun A, Fontaine-Aupart MP, Bellon-Fontaine MN, Briandet R (2002) Heterogeneity of the diffusion inside microbial biofilms using fluorescence correlation microscopy under two-photon excitation. Photochem Photobiol 75:570–578

    Article  CAS  Google Scholar 

  • Habimana O, Meyrand M, Meylheuc T, Kulakauskas S, Briandet R (2009) Genetic features of resident biofilm determine attachment of Listeria monocytogenes. Appl Environ Microbiol 75:7814–7821

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10

    Article  PubMed  CAS  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    Article  PubMed  CAS  Google Scholar 

  • Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59:253–268

    PubMed  CAS  Google Scholar 

  • Hope CK, Wilson M (2004) Analysis of the effects of chlorhexidine on oral biofilm vitality and structure based on viability profiling and an indicator of membrane integrity. Antimicrob Agents Chemother 48:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Huang CT, Yu FP, McFeters GA, Stewart PS (1995) Non-uniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol 61:2252–2256

    PubMed  CAS  Google Scholar 

  • Ito A, May T, Taniuchi A, Kawata K, Okabe S (2009) Localized expression profiles of rpoS in Escherichia coli biofilms. Biotechnol Bioeng 103:975–983

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg S, Marshall KC, Givskov M (2007) The biofilm mode of life. In: Kjelleberg S, Marshall KC, Givskov M (eds) The biofilm mode of life, mechanisms and adaptations. Horizon Bioscience, Wymondham

    Google Scholar 

  • Klausen M, Gjermansen M, Kreft J-U, Tolker-Nielsen T (2006) Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol Lett 261:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lakins MA, Marrison JL, O’Toole PJ, Van der Woude MW (2009) Exploiting advances in imaging technology to study biofilms by applying multiphotons laser scanning microscopy as an imaging and manipulation tool. J Microsc 235:128–137

    Article  PubMed  CAS  Google Scholar 

  • Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74:4463–4471

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry 70:267–274

    PubMed  CAS  Google Scholar 

  • Lopez D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618

    Article  PubMed  CAS  Google Scholar 

  • Mah T-F C, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • May T, Okabe S (2008) Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190:7479–7490

    Article  PubMed  CAS  Google Scholar 

  • Nadell CD, Xavier JB, Foster K (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    Article  PubMed  CAS  Google Scholar 

  • Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21

    Article  PubMed  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    PubMed  CAS  Google Scholar 

  • Palmer RJ, Sternberg C (1999) Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75:90–103

    PubMed  Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  PubMed  CAS  Google Scholar 

  • Phe MH, Dossot M, Guilloteau H, Block JC (2007) Highly chlorinated Escherichia coli cannot be stained by propidium iodide. Can J Microbiol 53:664–670

    Article  PubMed  CAS  Google Scholar 

  • Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    Article  PubMed  CAS  Google Scholar 

  • Rani SA, Pitts B, Stewart PS (2005) Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49:728–732

    Article  PubMed  CAS  Google Scholar 

  • Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb SA, Kjelleberg S (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282

    Article  PubMed  CAS  Google Scholar 

  • Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted-chains structures. Appl Environ Microbiol 74:4491–4497

    Article  PubMed  CAS  Google Scholar 

  • Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J (2007) Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. App Environ Microbiol 73:6125–6133

    Article  CAS  Google Scholar 

  • Schaudinn C, Carr G, Gorur A, Jaramillo D, Costerton JW, Webster P (2009) Imaging of endodontic biofilms by combined microscopy (FISH/cLSM – SEM). J Microsc 235:124–127

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Debarati P, Rakesh KJ (2006) Biofilms, implications in bioremediation. Trends Microbiol 14:389–397

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Pitts B, Trivedi HM, Stewart PS (2009) Diffusion of macromolecules in model oral biofilms. Appl Environ Microbiol 75:1750–1753

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74:1869–1875

    Article  PubMed  CAS  Google Scholar 

  • Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. Biofilms J Bacteriol 182:6482–6489

    Article  CAS  Google Scholar 

  • Veening JW, Smits WK, Hamoen LW, Jongbloed JD, Kuipers OP (2004) Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl Environ Microbiol 70:6809–6815

    Article  PubMed  CAS  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    Article  PubMed  CAS  Google Scholar 

  • Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Depth penetration and detection of pH gradients in biofilms by two photon excitation microscopy. Appl Environ Microbiol 65:3502–3511

    PubMed  CAS  Google Scholar 

  • Vuong C, Kocianova VJM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    Article  PubMed  CAS  Google Scholar 

  • Waharte F, Steenkeste K, Briandet R, Fontaine-Aupart MP (2010) Local diffusion measurements inside biofilms by FRAP analysis with a commercial confocal laser scanning microscope. Appl Environ Microbiol 76:5860–5869

    Article  PubMed  CAS  Google Scholar 

  • Walczysko P, Kuhlicke U, Knappe S, Cordes C, Neu TR (2008) In situ activity of suspended and immobilized microbial communities as measured by fluorescence lifetime imaging. Appl Environ Microbiol 74:294–299

    Article  PubMed  CAS  Google Scholar 

  • Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185: 4585–4592

    Article  PubMed  CAS  Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang C-T, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039

    PubMed  CAS  Google Scholar 

  • Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques – a review. Bioresour Technol 95:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for our work from the French “Pole de Compétitivité Ile-de-France MEDICEN” is greatly appreciated. AES-Chemunex is warmly acknowledged for providing ChemChrom V6 fluorophore. We thank the “department of Essonne” for financial support of the confocal microscope (ASTRE n°A02137) and the INRA MIMA2 microscopic facilities for CLSM imaging. O. Habimana, P. Latour-Lambert and P. Piveteau are acknowledged for their contribution to image acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Briandet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bridier, A. et al. (2011). Deciphering Biofilm Structure and Reactivity by Multiscale Time-Resolved Fluorescence Analysis. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_21

Download citation

Publish with us

Policies and ethics