Skip to main content

New Advances in QSPR/QSAR Analysis of Nitrocompounds: Solubility, Lipophilicity, and Toxicity

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry II

Abstract

This chapter discusses QSAR/QSPR applications of the simplex representation of molecular structure (SiRMS) methodology. It has been determined that SiRMS proves to be quite an efficient tool for analyzing nitroaromatic aqueous solubility, lipophilicity, and toxicity. Using multiple linear regression (MLR) and random forest (RF) statistical methods at the 2D level of representation of molecular structure, models possessing high statistical characteristics (MLR: R 2=0.85, Q 2=0.83; RF: R 2=0.99, \( R_{\text{OOB}}^2 = 0.{88} \)) were obtained for aqueous solubility of more than 2,800 organic compounds. The external validation set of 301 compounds (including 47 nitro-, nitroso-, and nitrogen-rich military compounds) was used for evaluation of the models’ predictive ability.

A 2D QSPR model based on SiRMS and RF approaches has been developed to predict “structure of octanol-water partition coefficient (LogK ow)” for a set of more than 10,970 organic compounds and has been successfully validated with two external test sets. This model predicts LogK ow values with the greatest accuracy among available modern models. LogK ow values of 29 military compounds with unknown experimental value of LogK ow have been predicted. The correspondence between observed and predicted toxicity values obtained using 1D and 2D models is quite high.

The most comprehensive consensus model allows for improved accuracy of toxicity predictions and has been shown to be an effective virtual screening tool. It was found that substitution of fluorine and hydroxyl groups into nitroaromatic compounds increases toxicity, whereas substitution of a methyl group has the opposite effect. The influence of chlorine on toxicity has not been determined unambiguously. The mutual influence of substituents in the benzene ring is substantially nonadditive and plays a crucial role regarding toxicity.

This chapter contains 5 subsections, 12 tables, and 8 figures. In the first and second subsections, a short introduction is presented, and applied methods are described. The third, fourth, and fifth subsections are devoted to the QSPR analysis of aqueous solubility, lipophilicity, and toxicity for nitroaromatic compounds with military interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most probably, the molecules of first external test were used for the construction of ALOGPS and EPI models.

  2. 2.

    For fluorine, there is only one contribution value because it occurs only in compound 23.

  3. 3.

    Differentiations of atoms by their refractions and electronegativities were not used in this model because of representation of the whole substituent like one pseudoatom.

  4. 4.

    This model is similar within certain limits to Free-Wilson approach.

  5. 5.

    The isomers cannot be distinguished by 1D QSAR models.

Abbreviations

CART:

Classification and regression trees algorithm

COSMO:

Conductor-like screening model

CR:

Continuum regression

DA:

Applicability domain

GA:

Genetic algorithm

HIT QSAR:

Hierarchical QSAR technology

LD50 :

50% lethal dose concentration

LogK ow :

Octanol-water partition coefficient

LUMO:

Lowest unoccupied molecular orbital

MAE:

Mean absolute error

MCI:

Molecular connectivity indices

MLR:

Multiple linear regression statistical method

MOE:

Molecular Operating Environment

MP:

Melting point

NN:

Neural network

OOB:

Out-of-bag set

PLS:

Partial least squares or projection on latent structures statistical method

RF:

Random forest statistical method

Q 2 :

Cross-validation determination coefficient

QSAR/QSPR:

Quantitative structure-activity/property relationship

R 2 :

Determination coefficient for training set

\( {R}_{\text{test}}^2 \) :

Determination coefficient for test set

SE:

Standard errors of prediction

SiRMS:

Simplex representation of molecular structure

S w :

Aqueous solubility

TV:

Trend-vector statistical method

References

  1. Bradbury SP, Russom CL, Ankley GT, Schultz TW, Walker JD (2003) Environ Toxicol Chem 22:1789–1798

    Article  CAS  Google Scholar 

  2. Cronin MT, Dearden JC, Walker JD, Worth AP (2003) Environ Toxicol Chem 22:1829–1843

    Article  CAS  Google Scholar 

  3. Cronin MT, Jaworska JS, Walker JD, Comber MH, Watts CD, Worth AP (2003) Environ Health Perspect 111:1391–1401

    Article  CAS  Google Scholar 

  4. Cronin MT, Walker JD, Jaworska JS, Comber MH, Watts CD, Worth AP (2003) Environ Health Perspect 111:1376–1390

    Article  CAS  Google Scholar 

  5. Dearden JC (2003) J Comput Aided Mol Des 17:119–127

    Article  CAS  Google Scholar 

  6. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Environ Health Perspect 111:1361–1375

    Article  CAS  Google Scholar 

  7. Fang H, Tong WD, Welsh WJ, Sheehan DM (2003) J Mol Struct (THEOCHEM) 622:113–125

    Article  CAS  Google Scholar 

  8. Patlewicz G, Rodford R, Walker JD (2003) Environ Toxicol Chem 22:1885–1893

    Article  CAS  Google Scholar 

  9. McKinney JD, Richard A, Waller C, Newman MC, Gerberick F (2000) Toxicol Sci 56:8–17

    Article  CAS  Google Scholar 

  10. Siraki AG, Chevaldina T, Moridani MY, O’Brien PJ (2004) Curr Opin Drug Discov Devel 7:118–125

    CAS  Google Scholar 

  11. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:178

    Article  CAS  Google Scholar 

  12. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2004) Regul Toxicol Pharmacol 40:185–206

    Article  CAS  Google Scholar 

  13. Lessigiarska I, Cronin MT, Worth AP, Dearden JC, Netzeva TI (2004) SAR QSAR Environ Res 15:169–190

    Article  CAS  Google Scholar 

  14. Walker JD, Carlsen L, Hulzebos E, Simon-Hettich B (2002) SAR QSAR Environ Res 13: 607–616

    Article  CAS  Google Scholar 

  15. Walker JD, Jaworska J, Comber MH, Schultz TW, Dearden JC (2003) Environ Toxicol Chem 22:1653–1665

    Article  CAS  Google Scholar 

  16. Russom CL, Breton RL, Walker JD, Bradbury SP (2003) Environ Toxicol Chem 22:1810–1821

    Article  CAS  Google Scholar 

  17. Gorb L, Hill FC, Kholod Y, Muratov EN, Kuz’min VE, Leszczynski J (2012) Progress in predictions of environmentally important, physico-chemical properties of energetic materials: applications of quantum-chemical calculations. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry II. Springer, Heidelberg

    Google Scholar 

  18. Kriek E (1979) Aromatic amines and related compounds as carcinogenic hazards to man. In: Emmelot P, Kriek E (eds) Environmental carcinogenesis. Elsevier, Amsterdam, pp 143–164

    Google Scholar 

  19. Won WD, di Salvo LH, Ng J (1976) Appl Environ Microbiol 31:576

    CAS  Google Scholar 

  20. Slater EC (1962) Comp Biochem Physiol 4:281

    Article  CAS  Google Scholar 

  21. Donlon BA, Razo-Flores E, Field JA, Lettinga G (1995) Appl Environ Microbiol 61:3889

    CAS  Google Scholar 

  22. Lipnick RL (1995) In: Rand GM (ed) Aquatic toxicology. Taylor & Francis, London, pp 609–655

    Google Scholar 

  23. Escher B, Schwarzenbach RP (2002) Aquat Sci 64:20

    Article  CAS  Google Scholar 

  24. Patai S (1982) The chemistry of amino, nitroso, and nitro compounds and their derivatives. Wiley, New York

    Book  Google Scholar 

  25. Feuer H, Nielsen AT (1990) Nitro compounds: recent advances in synthesis and chemistry. VCH Publishing, New York, p 636

    Google Scholar 

  26. Neilson AH, Allard A-S (2008) Environmental degradation and transformation of organic chemicals. CRC, Boca Raton, p 710

    Google Scholar 

  27. Talmage SS, Opresko DM, Maxwell CJ, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999) Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  28. Rickert DE (1984) Toxicity of nitroaromatic compounds. Hemisphere Publishing Corp, Bristol, p 295

    Google Scholar 

  29. Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Environ Toxicol Chem 19(7):1764

    CAS  Google Scholar 

  30. Katritzky AR, Oliferenko P, Oliferenko A, Lomaka A, Karelson M (2003) J Phys Org Chem 16:811

    Article  CAS  Google Scholar 

  31. Agrawal WK, Khadikar PV (2001) Bioorg Med Chem 9:3035

    Article  CAS  Google Scholar 

  32. Cronin MTD, Schultz TW (2001) Chem Res Toxicol 14:1284

    Article  CAS  Google Scholar 

  33. Cronin MTD, Gregory BW, Schultz TW (1998) Chem Res Toxicol 11:902

    Article  CAS  Google Scholar 

  34. Kuz’min VE, Artemenko AG, Muratov EN, Polischuk PG, Ognichenko LN, Liahovsky AV, Hromov AI, Varlamova EV (2009) In: Puzyn T, Cronin M, Leszczynski J (eds) Recent advances in QSAR studies. Springer, New York. doi:10.1007/978-1-4020-9783-6_5

    Google Scholar 

  35. Artemenko AG, Muratov EN, Kuz’min VE, Kovdienko NA, Hromov AI, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) J Antimicrob Chemother. doi:10.1093/jac/dkm172

  36. Kuz’min VE, Artemenko AG, Muratov EN, Volineckaya IL, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) J Med Chem 50:4205

    Article  CAS  Google Scholar 

  37. Muratov EN, Artemenko AG, Kuz’min VE, Lozitsky VP, Fedchuk AS, Lozitska RN, Boschenko YA, Gridina TL (2005) Antiviral Res 65(3):62

    Google Scholar 

  38. Kuz’min VE, Artemenko AG, Polischuk PG, Muratov EN, Hromov AI (2005) J Mol Mod 11:457

    Article  CAS  Google Scholar 

  39. Kuz’min VE, Artemenko AG, Muratov EN (2008) J Comput Aided Mol Des 22. doi:10.1007/s10822-008-9179-6

  40. Kuz’min VE, Artemenko AG, Lozitska RN, Fedtchouk AS, Lozitsky VP, Muratov EN, Mescheriakov AK (2005) SAR QSAR Environ Res 16:219

    Article  CAS  Google Scholar 

  41. Kuz’min VE, Artemenko AG, Lozitsky VP, Muratov EN, Fedtchouk AS, Dyachenko NS, Nosach LN, Gridina TL, Shitikova LI, Mudrik LM, Mescheriakov AK, Chelombitko VA, Zheltvay AI, Vanden Eynde J-J (2002) Acta Biochim Pol 49:157

    Google Scholar 

  42. Muratov E, Artemenko A, Kuz’min V, Konup I, Konup L, Kotlyar S, Kamalov G, Fedtchuk A, Mykhaylovska N (2006) Clin Microbiol Infect 12(Suppl 4):1558

    Google Scholar 

  43. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) J Chem Inf Model 46:1984

    Article  CAS  Google Scholar 

  44. Kuz’min VE (1995) About homo- and heterochirality of dissymmetrical tetrahedrons (chiral simplexes). Stereochemical tunneling. Zh Strucur Khim 36:873–878 (in Russian)

    Google Scholar 

  45. Jolly WL, Perry WB (1973) J Am Chem Soc 95:5442–5450

    Article  CAS  Google Scholar 

  46. Wang R, Fu Y, Lai L (1997) J Chem Inf Comp Sci 37:615

    Article  CAS  Google Scholar 

  47. Ioffe BV (1983) Chemistry refractometric methods. Himiya, Leningrad, p 352

    Google Scholar 

  48. Kuz’min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J (2008) Chemosphere 72:1373

    Article  CAS  Google Scholar 

  49. Seel M, Turner DB, Wilett P (1999) HQSAR – a highly predictive QSAR technique based on molecular holograms. QSAR 18:245–252

    CAS  Google Scholar 

  50. Baurin N, Mozziconacci JC, Arnoult E et al (2004) J Chem Inf Model 44:276–285

    Article  CAS  Google Scholar 

  51. Lindgren F, Geladi P, Rännar S, Wold S (1994) J Chemometr 8:349

    Article  Google Scholar 

  52. Kubinyi H (1996) J Chemometr 10:119

    Article  CAS  Google Scholar 

  53. Hasegawa K, Miyashita Y, Funatsu K (1997) J Chem Inf Comput Sci 37:306

    Article  CAS  Google Scholar 

  54. Carhart RE, Smith DH, Venkataraghavan R (1995) J Chem Inf Comput Sci 25:64

    Google Scholar 

  55. Kuz’min VE, Artemenko AG, Kovdienko NA, Tetko IV, Livingstone DJ (2000) J Mol Model 6:517

    Article  Google Scholar 

  56. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) Altern Lab Anim 33:445

    CAS  Google Scholar 

  57. Breiman L (2001) Mach Learn 45(1):5

    Article  Google Scholar 

  58. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont, CA, republished by CRC Press, p 368

    Google Scholar 

  59. Dearden JC (2006) Drug Dis 1(1):31

    CAS  Google Scholar 

  60. Valvani SC, Yalkowsky SH, Roseman TJ (1981) J Pharm Sci 70:502

    Article  CAS  Google Scholar 

  61. Lyman WJ, Reehl WF, Rosenblatt DH (1982) Solubility in water, Handbook of chemical property estimation methods. McGraw-Hill, New York. 2(1):2–52

    Google Scholar 

  62. Chastrette M, Rajzmann M, Chanon M, Purcell KF (1985) J Am Chem Soc 107:1

    Article  CAS  Google Scholar 

  63. Kamlet MJ, Doherty RM, Abraham MH, Carr PW, Doherty RF, Taft RW (1987) J Phys Chem 91:1996

    Article  CAS  Google Scholar 

  64. Yalkowsky SH, Banerjee S (1992) Aqueous solubility: methods of estimation for organic compounds. Marcel Dekker, New York

    Google Scholar 

  65. Bergstrom CAS, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P (2003) J Med Chem 46:558

    Article  CAS  Google Scholar 

  66. Bergstrom CAS, Wassvik CM, Norinder U, Luthman K, Artursson P (2004) J Chem Inf Comput Sci 44:1477

    Article  CAS  Google Scholar 

  67. Wegner JK, Zell A (2003) J Chem Inf Comput Sci 43:1077

    Article  CAS  Google Scholar 

  68. Sun H (2004) J Chem Inf Comput Sci 44:748

    Article  CAS  Google Scholar 

  69. Raevsky OA, Raevskaja OE, Schaper K-E (2004) QSAR Comb Sci 23:327

    Article  CAS  Google Scholar 

  70. Catana C, Gao H, Orrenius C, Stouten PFW (2005) J Chem Inf Model 45:170–176

    Article  CAS  Google Scholar 

  71. Wang Y-L, Hu Y-D, Wu L-Y, An W-Z (2006) Int J Mol Sci 7:47

    Article  CAS  Google Scholar 

  72. Jain N, Yang G, Machatha SG, Yalkowsky SH (2006) Int J Pharm 319:169–171

    Article  CAS  Google Scholar 

  73. Lu G-N, Dang Z, Tao X-Q, Yang C, Yi X-Y (2008) QSAR Comb Sci 27:618

    Article  CAS  Google Scholar 

  74. Yang G-Y, Yu J, Wang Z-Y, Zeng X-L, Xue-Hai Ju (2007) QSAR Comb Sci 26:352

    Article  CAS  Google Scholar 

  75. Wang J, Krudy G, Hou T, Holland G, Xu XX (2007) J Chem Inf Model 47:1395

    Article  CAS  Google Scholar 

  76. Wang J, Hou T, Xu X (2009) J Chem Inf Model 49:571

    Article  CAS  Google Scholar 

  77. Ghasemi J, Saaidpour S (2007) Chem Pharm Bull 55:669

    Article  CAS  Google Scholar 

  78. Tomida D, Nishino T, Yokoyama C (2007) Jpn J Thermophys Prop 21:19

    Article  CAS  Google Scholar 

  79. Palmer DS, O’Boyle NM, Glen RC, Mitchell JBO (2007) J Chem Inf Model 47:150

    Article  CAS  Google Scholar 

  80. Yalkowsky SH, He Y (2003) Handbook of aqueous solubility data. CRC Press, Boca Raton

    Book  Google Scholar 

  81. Kovdienko NA, Polishchuk PG, Muratov EN, Artemenko AG, Kuz’min VE, Gorb L, Hill F, Leszczynski J (2010) Mol Inf 29:394

    Article  CAS  Google Scholar 

  82. Ferste E, Renz B (1979) Methoden der Korrelations und Regressionanalyse. Die Wirtschaft, Berlin

    Google Scholar 

  83. Hansch C, Quinlan JE, Lawrence GL (1968) J Org Chem 33(1):347

    Article  CAS  Google Scholar 

  84. Abraham MH, Le J (1999) J Pharm Sci 88:868

    Article  CAS  Google Scholar 

  85. Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology (2004) OECD series on testing and assessment: The report from the expert group on (Quantitative) Structure-Activity Relationships [(Q)SARs] on the principles for the validation of (Q)SARs. OECD. Paris. ENV/JM/MONO(2004)24, v.49:206

    Google Scholar 

  86. Wang R, Gao Y, Lai L (2000) Perspect Drug Discov 19:47

    Article  CAS  Google Scholar 

  87. Leo AJ (1993) Chem Rev 93:1281

    Article  CAS  Google Scholar 

  88. Tetko IV, Tanchuk VY, Villa AEP (2001) J Chem Inf Comput Sci 41(5):1407–1421. http://www.vcclab.org/lab/alogps

    Google Scholar 

  89. Niemi GJ, Basak SC, Veith GD, Grunwald G (1992) Environ Toxicol Chem 11:893

    CAS  Google Scholar 

  90. Makino M (1998) Chemosphere 37:13

    Article  CAS  Google Scholar 

  91. Petrauskas AA, Kolovanov EA (2000) Perspect Drug Discov 19:99

    Article  CAS  Google Scholar 

  92. Meylan W, Howard PH (2000) Perspect Drug Discov 19:67

    Article  CAS  Google Scholar 

  93. Gaillard P, Carrupt PA, Testa B, Boudon AJ (1994) J Comput Aided Mol Des 8:83

    Article  CAS  Google Scholar 

  94. Klopman G, Li J, Wang S, Dimayuga M (1994) J Chem Inf Comput Sci 34:752

    Article  CAS  Google Scholar 

  95. Viswanadhan VN, Ghose AK, Wendolowski J (2000) Perspect Drug Discov 19:85

    Article  CAS  Google Scholar 

  96. Convard T, Dubost JP, Solleu HI, Kummer E (1994) Quant Struct-Act Rel 13:34

    CAS  Google Scholar 

  97. Suzuki T, Kudo Y (1990) J Comput Aided Mol Des 4:155

    Article  CAS  Google Scholar 

  98. Muratov EN, Kuz’min VE, Artemenko AG, Kovdienko NA, Gorb L, Hill F, Leszczynski J (2010) Chemosphere 79:887

    Article  CAS  Google Scholar 

  99. Syracuse Research Corporation (1994) Physical/chemical property database (PHYSPROP). SRC Environmental Science Center, Syracuse

    Google Scholar 

  100. Advanced Chemistry Development, Inc. (ACD/Labs). http://www.acdlab.com

  101. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  102. Tropsha A, Golbraikh A (2007) Curr Pharm Des 13:3494

    Article  CAS  Google Scholar 

  103. Muratov EN, Artemenko AG, Varlamova EV, Polischuk PG, Lozitsky VP, Fedtchuk AS, Lozitska RN, Gridina TL, Koroleva LS, Sil’nikov VN, Galabov AS, Makarov VA, Riabova OB, Wutzler P, Schmidtke M, Kuz’min VE (2010) Future Med Chem 2:1205

    Article  CAS  Google Scholar 

  104. Tropsha A (2010) Mol Inf 29:476

    Article  CAS  Google Scholar 

  105. Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Mol Divers 10:233

    Article  CAS  Google Scholar 

  106. Kuz’min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J (2008) J Comput Aided Mol Des 22:747

    Article  CAS  Google Scholar 

  107. Gramatica P (2004) Evaluation of different statistical approaches for the validation of Quantitative Structure –Activity Relationships. ECVAM, Ispra, p 177 p

    Google Scholar 

  108. Rappe AK, Casewit CJ, Colwell KS, Goddart WA, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  CAS  Google Scholar 

  109. Kuz’min VE, Artemenko AG, Muratov EN, Lozitsky VP, Fedchuk AS, Lozitska RN, Boschenko YA, Gridina TL (2005) Antiviral Res 65(3):A70–A71

    Google Scholar 

Download references

Acknowledgments

The authors thank the NSF CREST Interdisciplinary Nanotoxicity Center NSF-CREST for support–Grant # HRD-0833178, and the NSF-EPSCoR Award #: 362492-190200-01\NSFEPS-0903787. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the USAERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ognichenko, L.N. et al. (2012). New Advances in QSPR/QSAR Analysis of Nitrocompounds: Solubility, Lipophilicity, and Toxicity. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0923-2_8

Download citation

Publish with us

Policies and ethics