Skip to main content

Potential Path of DNA Damage: Electron Attachment–Induced DNA Single-Strand Breaks

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry II

Abstract

The theoretical study of the electron attachment to DNA reveals the possible mechanism of one of the possible paths of damages in DNA single strands – the low energy electron induced strand breaks. This mechanism includes the formation of an electronically stable radical anion at the nascent stage, and the bond breaking at the C–O σ-bonds at the subsequent steps. In the gas phase, the strand break in the pyrimidine diphosphates is dominated by the C3′–O3′ σ-bond cleavage pathway. Moreover, due to the low electron affinities of the purine diphosphates and the low vertical electron detachment energies of the corresponding radical anions, the bond breaks is unlikely to occur in the gas phase. However, the existence of the polarizable surroundings appreciably changes the scenarios. The comparatively high electron affinities of the 3′,5′-dGDP and the vertical detachment energy of 3′,5′-dGDP· ensure the formation of the electronically stable radical anion. Furthermore, the surrounding-solute interactions greatly reduce the activation barriers of the C–O bond cleavage, which facilitates the C5′–O5′ or C3′–O3′ bond ruptures at the guanosine site in DNA dominating the damages in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao X, Wang J, Gu J, Leszczynski J (2006) Proc Natl Acad Sci USA 103:5658–5663

    Article  CAS  Google Scholar 

  2. Ray SG, Daube SS, Naaman RJ (2005) Proc Natl Acad Sci USA 102:15–19

    Article  CAS  Google Scholar 

  3. Richardson NA, Gu J, Wang S, Xie Y, Schaefer HF (2004) J Am Chem Soc 126:4404–4411

    Article  CAS  Google Scholar 

  4. Gu J, Wang J, Leszczynski J (2006) J Am Chem Soc 128:9322–9323

    Article  CAS  Google Scholar 

  5. Gu J, Xie Y, Schaefer HF (2007) Nucleic Acid Res 35:5165–5172

    Article  CAS  Google Scholar 

  6. Becker D, Sevilla MD (1993) The chemical consequences of radiation damage to DNA. In: Lett J (ed) Advances in radiation biology, vol 17. Academic, New York, pp 121–180

    Google Scholar 

  7. Kelley SO, Barton JK (1999) Science 283:375–381

    Article  CAS  Google Scholar 

  8. Ratner M (1999) Nature 397:480–481

    Article  CAS  Google Scholar 

  9. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658–1659

    Article  CAS  Google Scholar 

  10. Pan X, Cloutier P, Hunting D, Sanche L (2003) Phys Rev Lett 90:208102

    Article  CAS  Google Scholar 

  11. Caron LG, Sanche L (2003) Phys Rev Lett 91:113201

    Article  CAS  Google Scholar 

  12. Zheng Y, Cloutier P, Hunting D, Wagner JR, Sanche L (2004) J Am Chem Soc 126:1002–1003

    Article  CAS  Google Scholar 

  13. Hall DB, Holmlin RE, Barton JK (1996) Nature 382:731–735

    Article  CAS  Google Scholar 

  14. Steenken S (1997) Biol Chem 378:1293–1297

    CAS  Google Scholar 

  15. Taubes G (1997) Science 275:1420–1421

    Article  CAS  Google Scholar 

  16. Berlin YA, Burin AL, Ratner MA (2001) J Am Chem Soc 123:260–268

    Article  CAS  Google Scholar 

  17. Beljonne D, Pourtois G, Ratner MA, Bredas JL (2003) J Am Chem Soc 125:14510–14517

    Article  CAS  Google Scholar 

  18. Huels MA, Hahndorf I, Illenberger E, Sanche L (1998) J Chem Phys 108:1309–1312

    Article  CAS  Google Scholar 

  19. Hanel G, Gstir B, Denifl S, Scheier P, Probst M, Farizon B, Farizon M, Illenberger E, Mark TD (2003) Phys Rev Lett 90:188104–1–188104–4

    Google Scholar 

  20. Li X, Sevilla MD, Sanche L (2003) J Am Chem Soc 125:13668–13669

    Article  CAS  Google Scholar 

  21. Huels MA, Boudaiffa B, Cloutier P, Hunting D, Sanche L (2003) J Am Chem Soc 125: 4467–4477

    Article  CAS  Google Scholar 

  22. Abdoul-Carime H, Gohlke S, Fischbach E, Scheike J, Illenberger E (2004) Chem Phys Lett 387:267–270

    Article  CAS  Google Scholar 

  23. Barrios R, Skurski P, Simons J (2002) J Phys Chem B 106:7991–7994

    Article  CAS  Google Scholar 

  24. Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Am Chem Soc 126:6441–6447

    Article  CAS  Google Scholar 

  25. Berdys J, Skurski P, Simons J (2004) J Phys Chem B 108:5800–5805

    Article  CAS  Google Scholar 

  26. Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Phys Chem A 108:2999–3005

    Article  CAS  Google Scholar 

  27. Gu J, Xie Y, Schaefer HF (2005) J Am Chem Soc 127:1053–1057

    Article  CAS  Google Scholar 

  28. Zheng Y, Cloutier P, Hunting DJ, Sanche L, Wagner JR (2005) J Am Chem Soc 127: 16592–16598

    Article  CAS  Google Scholar 

  29. Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2006) J Chem Phys 124:064710

    Article  Google Scholar 

  30. Simons J (2006) Acc Chem Res 39:772–779

    Article  CAS  Google Scholar 

  31. Sanche L (2005) Eur Phys J D 35:367–390

    Article  CAS  Google Scholar 

  32. Li X, Sanche L, Sevilla MD (2006) Radiat Res 165:721–729

    Article  CAS  Google Scholar 

  33. LaVerne JA, Pimblott SM (1995) Radiat Res 141:208–215

    Article  CAS  Google Scholar 

  34. Kumar A, Sevilla MD (2007) J Phys Chem B 111:5464–5474

    Article  CAS  Google Scholar 

  35. Sanche L (2009) Nature 461:358–359

    Article  CAS  Google Scholar 

  36. Wang C-R, Nguyen J, Lu Q-B (2009) J Am Chem Soc 131:11320–11322

    Article  CAS  Google Scholar 

  37. Wang C-R, Lu Q-B (2010) J Am Chem Soc 132:14710–14713

    Google Scholar 

  38. Gu J, Wang J, Leszczynski J (2010) Chemphyschem 11:175–181

    Article  CAS  Google Scholar 

  39. Gu J, Wang J, Leszczynski J (2010) Nucleic Acids Res 38:5280–5290

    Article  CAS  Google Scholar 

  40. Schiedt J, Weinkauf R, Neumark DM, Schlag EW (1998) Chem Phys 239:511–524

    Article  CAS  Google Scholar 

  41. Gu J, Xie Y, Schaefer HF (2006) J Am Chem Soc 128:1250–1252

    Article  CAS  Google Scholar 

  42. Wesolowski SS, Leininger ML, Pentchev PN, Schaefer HF (2001) J Am Chem Soc 123: 4023–4028

    Article  CAS  Google Scholar 

  43. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  44. Gu J, Xie Y, Schaefer HF (2005) J Phys Chem B 109:13067–13075

    Article  CAS  Google Scholar 

  45. Stokes ST, Li X, Grubisic A, Ko YJ, Bowen KH (2007) J Chem Phys 127:084321–6

    Article  Google Scholar 

  46. Li X, Sevilla MD (2007) Adv Quantum Chem 52:59–87

    Article  CAS  Google Scholar 

  47. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  48. Li Z, Zheng Y, Cloutier P, Sanche L, Wagner JR (2008) J Am Chem Soc 130:5612–5613

    Article  CAS  Google Scholar 

  49. Gu J, Wang J, Leszczynski J (2011) J Phys Chem B 115:14831–14837

    Google Scholar 

  50. Schyman P, Laaksonen A (2008) J Am Chem Soc 130:12254–12255

    Article  CAS  Google Scholar 

  51. von Sonntag C (2007) Adv Quantum Chem 52:5–20

    Article  Google Scholar 

Download references

Acknowledgments

This project in the USA was supported by the NSF CREST Grant No. HRD-0833178. In China, it was supported by the National Science&Technology Major Project “Key New Drug Creation and Manufacturing Program,” China (Number:2009ZX09301-001). We would like to thank the Mississippi Center for Supercomputing Research for a generous allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiande Gu or Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gu, J., Wang, J., Leszczynski, J. (2012). Potential Path of DNA Damage: Electron Attachment–Induced DNA Single-Strand Breaks. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0923-2_14

Download citation

Publish with us

Policies and ethics