Skip to main content

Practical Aspects of Quantum Monte Carlo for the Electronic Structure of Molecules

  • Chapter
  • First Online:
  • 2394 Accesses

Abstract

A family of quantum chemical methods under the common name “quantum Monte Carlo” are reviewed. QMC is one of the most powerful theoretical frameworks that can be applied to the problems of electronic structure theory. Theoretical and practical aspects of variational Monte Carlo and diffusion Monte Carlo approaches are discussed in detail due to their computational feasibility, robustness and quality of results. Several factors that contribute to the systematic improvement of the accuracy of QMC calculations are considered, including selection of accurate and flexible forms of the trial wave function and strategies for optimizing parameters within these trial functions. We also provide an analysis of the scaling properties that govern the growth of computational expense of QMC simulations for molecules of increasing size. Linear scaling algorithms for QMC are emphasized. Consideration of parallel efficiency is especially important in the view of proliferation of high-performance computing facilities, where the potential of QMC can be used to its fullest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hammond BL, Lester WA Jr, Reynolds PJ (1994) Monte Carlo methods in ab initio quantum chemistry. World Scientific, Singapore

    Google Scholar 

  2. Metropolis N, Ulam S (1949) J Am Stat Assoc 44:335

    CAS  PubMed  Google Scholar 

  3. Kalos MH (1962) Phys Rev 128:1791

    Google Scholar 

  4. Anderson JB (1975) J Chem Phys 63:1499

    CAS  Google Scholar 

  5. Schmidt KE (1986) Variational and green’s function Monte Carlo calculations of few body systems. Conference on models and methods in few body physics, Lisbon

    Google Scholar 

  6. Lester WA Jr, Hammond BL (1990) Annu Rev Phys Chem 41:283

    CAS  Google Scholar 

  7. Aspuru-Guzik A, Kollias AC, Salomon-Ferrer R, Lester WA Jr (2005) Quantum Monte Carlo: theory and application to atomic, molecular and nano systems. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  8. Ceperley DM, Mitas L (1996) Quantum Monte Carlo methods in chemistry. In: Prigogine I, Rice SA (eds) New methods in computational quantum mechanics, vol XCIII, Advances in chemical physics. Wiley, New York

    Google Scholar 

  9. Acioli PH (1997) J Mol Struct (Theochem) 394:75

    CAS  Google Scholar 

  10. Bressanini D, Reynolds PJ (1998) Adv Chem Phys 105:37

    Google Scholar 

  11. Mitas L (1998) Diffusion Monte Carlo. In: Nightingale MP, Umrigar CJ (eds) Quantum Monte Carlo methods in physics and chemistry. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  12. Anderson JB (1999) Quantum Monte Carlo: atoms, molecules, clusters, liquids and solids. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New York

    Google Scholar 

  13. Luchow A, Anderson JB (2000) Annu Rev Phys Chem 51:501

    CAS  PubMed  Google Scholar 

  14. Foulkes M, Mitas L, Needs R, Rajagopal G (2001) Rev Mod Phys 73:33

    CAS  Google Scholar 

  15. Aspuru-Guzik A, Lester WA Jr (2003) Quantum Monte Carlo methods for the solution of the Schroedinger equation for molecular systems. In: Le Bris C (ed) Computational chemistry, vol X, Handbook of numerical analysis. Elsevier, Amsterdam

    Google Scholar 

  16. Koonin SE, Meredith DC (1995) Computational physics, FORTRAN version. Addison Wesley, Reading

    Google Scholar 

  17. Gould H, Tobochnik J (1996) An introduction to computer simulation methods: applications to physical systems. Addison Wesley, Reading

    Google Scholar 

  18. Thijssen JM (1999) Computational physics. Cambridge University Press, Press

    Google Scholar 

  19. Ceperley DM (1995) Rev Mod Phys 67:279

    CAS  Google Scholar 

  20. Sarsa A, Schmidt KE, Magro WR (2000) J Chem Phys 113:1366

    CAS  Google Scholar 

  21. Bauer WF (1958) J Soc Ind Appl Math 6:438

    Google Scholar 

  22. Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Methuen, London

    Google Scholar 

  23. Halton JH (1970) SIAM Rev 12:1

    Google Scholar 

  24. Wood WW, Erpenbeck JJ (1976) Annu Rev Phys Chem 27:319

    CAS  Google Scholar 

  25. McDowell K (1981) Int J Quant Chem: Quant Chem Symp 15:177

    CAS  Google Scholar 

  26. Kalos MH, Whitlock PA (1986) Monte Carlo methods volume 1: basics. Wiley, New York

    Google Scholar 

  27. Sobol IM (1994) A primer for Monte Carlo method. CRC Press, Boca Raton

    Google Scholar 

  28. Fishman GS (1996) Monte Carlo: concepts, algorithms and applications. Springer, New York

    Google Scholar 

  29. Manno I (1999) Introduction to the Monte Carlo method. Akademiai Kiado, Budapest

    Google Scholar 

  30. Doucet A, de Freitas N, Gordon N, Smith A (eds) (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Google Scholar 

  31. Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, New York

    Google Scholar 

  32. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller NM, Teller E (1953) J Chem Phys 21:1087

    CAS  Google Scholar 

  33. Ceperley DM, Bernu B (1988) J Chem Phys 89:6316

    CAS  Google Scholar 

  34. Einstein A (1987) The collected papers of Albert Einstein, investigations on the theory of Brownian Movement. Princeton University Press, Princeton

    Google Scholar 

  35. Assaraf R, Caffarel M, Khelif A (2000) Phys Rev E 61:4566

    CAS  Google Scholar 

  36. Umrigar CJ, Nightingale MP, Runge KJ (1993) J Chem Phys 99:2865

    CAS  Google Scholar 

  37. DePasquale MF, Rothstein SM, Vrbik J (1988) J Chem Phys 89:3629

    CAS  Google Scholar 

  38. Grossman JC (2002) J Chem Phys 117:1434

    CAS  Google Scholar 

  39. Flad HJ, Caffarel M, Savin A (1997) Recent advances in quantum Monte Carlo methods. World Scientific, Singapore

    Google Scholar 

  40. Bressanini D, Morosi G (2008) J Chem Phys 129:054103

    PubMed  Google Scholar 

  41. Bressanini D, Morosi G, Tarasco S (2005) J Chem Phys 123:204109

    PubMed  Google Scholar 

  42. Ortiz JV, Weiner B, Ohrn Y (1981) Int J Quant Chem S15:113

    Google Scholar 

  43. Casula M, Sorella S (2003) J Chem Phys 119:6500

    CAS  Google Scholar 

  44. Domin D, Braida B, Lester WA Jr (2008) J Phys Chem A 112:8964

    CAS  PubMed  Google Scholar 

  45. Anderson AG, Goddard WA III (2010) J Chem Phys 132:164110

    PubMed  Google Scholar 

  46. Bajdich M, Mitas L, Drobny G, Wagner LK, Schmidt KE (2006) Phys Rev Lett 96:130201

    CAS  PubMed  Google Scholar 

  47. Lopez Rios P, Ma A, Drummond ND, Towler MD, Needs RJ (2006) Phys Rev E 74:066701

    CAS  Google Scholar 

  48. Reynolds PJ, Dupuis M, Lester WA Jr (1985) J Chem Phys 82:1983

    CAS  Google Scholar 

  49. Umrigar CJ, Toulouse J, Filippi C, Sorella S, Hennig RG (2007) Phys Rev Lett 98:110201

    CAS  PubMed  Google Scholar 

  50. Umrigar CJ, Wilson KG, Wilkins JW (1988) Phys Rev Lett 60:1719

    CAS  PubMed  Google Scholar 

  51. Klein DJ, Pickett HM (1976) J Chem Phys 64:4811

    CAS  Google Scholar 

  52. Korsch HJ (1983) Phys Lett A 97:77

    Google Scholar 

  53. Ceperley DM (1991) J Stat Phys 63:1237

    Google Scholar 

  54. Glauser WA, Brown WR, Lester WA Jr, Bressanini D, Hammond BL, Koszykowski ML (1992) J Chem Phys 97:9200

    CAS  Google Scholar 

  55. Bressanini D, Reynolds P (2005) J Phys Rev Lett 95:110201

    Google Scholar 

  56. Ceperley DM, Alder B (1980) J Phys Rev Lett 45:566

    CAS  Google Scholar 

  57. Ceperley DM, Alder BJ (1984) J Chem Phys 81:5833

    Google Scholar 

  58. Bianchi R, Bressanini D, Cremaschi P, Morosi G (1993) Comput Phys Commun 74:153

    CAS  Google Scholar 

  59. Bianchi R, Bressanini D, Cremaschi P, Morosi G (1991) Chem Phys Lett 184:343

    CAS  Google Scholar 

  60. Bianchi R, Bressanini D, Chremaschi P, Morosi G (1993) J Chem Phys 98:7204

    CAS  Google Scholar 

  61. Koseki J, Maezono R, Tachikawa M, Towler MD, Needs RJ (2008) J Chem Phys 129:085103

    PubMed  Google Scholar 

  62. Ceperley DM, Kalos MH (1986) Quantum Many-Body problems. In: Binder K (ed) Monte Carlo methods in statistical physics. Springer, New York

    Google Scholar 

  63. Kalos MH, Pederiva F (1999) Fermion Monte Carlo. In: Nightingale MP, Umrigar CJ (eds) Quantum Monte Carlo methods in physics and chemistry. NATO advanced study institute on quantum Monte Carlo methods in physics and chemistry. Springer, Dordrecht

    Google Scholar 

  64. Bajdich M, Tiago ML, Hood RQ, Kent PRC, Reboredo FA (2010) Phys Rev Lett 104:193001

    PubMed  Google Scholar 

  65. Reboredo FA, Hood RQ, Kent PRC (2009) Phys Rev B 79:195117

    Google Scholar 

  66. Reboredo FA (2009) Phys Rev B 80:125110

    Google Scholar 

  67. Baer R, Head-Gordon M, Neuhauser D (1998) J Chem Phys 109:6219

    CAS  Google Scholar 

  68. Baer R (2000) Chem Phys Lett 324:101

    CAS  Google Scholar 

  69. Zhang SW, Krakauer H (2003) Phys Rev Lett 90:2003

    Google Scholar 

  70. Zhang SW, Krakauer H (2003) Phys Rev Lett 90:136401

    PubMed  Google Scholar 

  71. Al-Saidi WA, Zhang SW, Krakauer H (2006) J Chem Phys 124:224101

    CAS  PubMed  Google Scholar 

  72. Al-Saidi WA, Krakauer H, Zhang SW (2006) J Chem Phys 125:154110

    CAS  PubMed  Google Scholar 

  73. Al-Saidi WA, Krakauer H, Zhang SW (2007) J Chem Phys 126:194105

    CAS  PubMed  Google Scholar 

  74. Baroni S, Moroni S (1999) Phys Rev Lett 82:4745

    CAS  Google Scholar 

  75. Caffarel M, Claverie P (1988) J Chem Phys 88:1088, 88:1100

    CAS  Google Scholar 

  76. Yuen WK, Farrar TJ, Rothstein SM (2007) J Phys A: Math Theor 40:F639

    CAS  Google Scholar 

  77. Yuen WK, Oblinsky DG, Giacometti RD, Rothstein SM (2009) Int J Quant Chem 109:3229

    CAS  Google Scholar 

  78. Booth GH, Alavi A (2010) J Chem Phys 132:174104

    PubMed  Google Scholar 

  79. Cleland D, Booth GH, Alavi A (2010) J Chem Phys 132:041103

    PubMed  Google Scholar 

  80. Booth GH, Thom AJW, Alavi A (2009) J Chem Phys 131:054106

    PubMed  Google Scholar 

  81. Christov IP (2006) Opt Express 14:6906

    CAS  PubMed  Google Scholar 

  82. Christov IP (2007) J Chem Phys 127:134110

    PubMed  Google Scholar 

  83. Christov IP (2008) J Chem Phys 129:214107

    PubMed  Google Scholar 

  84. Christov IP (2008) J Chem Phys 128:244106

    PubMed  Google Scholar 

  85. Christov IP (2009) J Phys Chem A 113:6016

    CAS  PubMed  Google Scholar 

  86. Luan T, Curotto E, Mella M (2008) J Chem Phys 128:164102

    CAS  PubMed  Google Scholar 

  87. Ramilowski JA, Farrelly D (2010) Phys Chem Chem Phys 12:12450

    CAS  PubMed  Google Scholar 

  88. Toulouse J, Umrigar CJ (2008) J Chem Phys 128:174101

    PubMed  Google Scholar 

  89. Luchow A, Petz R, Scott TC (2007) J Chem Phys 126:144110

    PubMed  Google Scholar 

  90. Scott TC, Luchow A, Bressanini D, Morgan JD III (2007) Phys Rev A 75:060101(R)

    Google Scholar 

  91. Vrbik J, DePasquale MF, Rothstein SM (1988) J Chem Phys 88:3784

    CAS  Google Scholar 

  92. Barnett RN, Reynolds PJ, Lester WA Jr (1991) J Comput Phys 96:258

    Google Scholar 

  93. Barnett RN, Reynolds PJ, Lester WA Jr (1992) J Chem Phys 96:2141

    CAS  Google Scholar 

  94. Vrbik J, Legare DA, Rothstein SM (1990) J Chem Phys 92:1221

    CAS  Google Scholar 

  95. Vrbik J, Rothstein SM (1992) J Chem Phys 96:2071

    CAS  Google Scholar 

  96. Assaraf R, Caffarel M (2000) J Chem Phys 113:4028

    CAS  Google Scholar 

  97. Vrbik J (2008) Int J Quant Chem 108:493

    CAS  Google Scholar 

  98. Gaudoin R, Pitarke JM (2007) Phys Rev Lett 99:126406

    CAS  PubMed  Google Scholar 

  99. Assaraf R, Caffarel M (2003) J Chem Phys 119:10536

    CAS  Google Scholar 

  100. Toulouse J, Assaraf R, Umrigar CJ (2007) J Chem Phys 126:244112

    PubMed  Google Scholar 

  101. Per MC, Russo SP, Snook IK (2008) J Chem Phys 128:114106

    PubMed  Google Scholar 

  102. Lee MW, Levchenko SV, Rappe AM (2007) Mol Phys 105:2493

    CAS  Google Scholar 

  103. Sorella S, Capriotti L (2010) J Chem Phys 133:234111

    PubMed  Google Scholar 

  104. Wagner LK, Grossman JC (2010) Phys Rev Lett 104:210201

    PubMed  Google Scholar 

  105. Coles B, Vrbik P, Giacometti RD, Rothstein SM (2008) J Phys Chem A 112:2012

    CAS  PubMed  Google Scholar 

  106. Purwanto W, Al-Saidi WA, Krakauer H, Zhang S (2008) J Chem Phys 128:114309

    PubMed  Google Scholar 

  107. Grimes RM, Hammond BL, Reynolds PJ, Lester WA Jr (1986) J Chem Phys 84:4749

    Google Scholar 

  108. Schautz F, Filippi C (2004) J Chem Phys 120:10931

    CAS  PubMed  Google Scholar 

  109. Schautz F, Buda F, Filippi C (2004) J Chem Phys 121:5836

    CAS  PubMed  Google Scholar 

  110. Sandvik AW, Vidal G (2007) Phys Rev Lett 99:220602

    CAS  PubMed  Google Scholar 

  111. Bouabca T, Braida B, Caffarel M (2010) J Chem Phys 133:044111

    PubMed  Google Scholar 

  112. Andrews SB, Burton NA, Hillier IH, Holender JM, Gillan MJ (1996) Chem Phys Lett 261:521

    CAS  Google Scholar 

  113. Slater JC (1930) Phys Rev 36:57

    CAS  Google Scholar 

  114. Davidson ER, Feller D (1986) Chem Rev 86:681

    CAS  Google Scholar 

  115. Ma A, Towler MD, Drummond ND, Needs RJ (2005) J Chem Phys 122:224322

    CAS  PubMed  Google Scholar 

  116. Petruzielo FR, Toulouse J, Umrigar CJ (2010) J Chem Phys 132:094109

    CAS  PubMed  Google Scholar 

  117. Junquera J, Paz O, Sanchez-Portal D, Artacho E (2001) Phys Rev B 64:235111

    Google Scholar 

  118. Harrison RJ, Fann GI, Yanai T, Gan Z, Beylkin G (2004) J Chem Phys 121:11587

    CAS  PubMed  Google Scholar 

  119. Lowdin PO (1959) Adv Chem Phys 2:59

    Google Scholar 

  120. Head-Gordon M (1996) J Phys Chem 100:13213

    CAS  Google Scholar 

  121. Olsen J, Helgaker T, Jorgensen P (2000) Molecular electronic-structure theory. Wiley, New York

    Google Scholar 

  122. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Courier Dover Publications, New York

    Google Scholar 

  123. Bartlett RJ (1981) Annu Rev Phys Chem 32:359

    CAS  Google Scholar 

  124. Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken

    Google Scholar 

  125. Cooper DL (2002) Valence bond theory. Elsevier, Amsterdam/Boston

    Google Scholar 

  126. Bouchaud JP, Georges S, Lhuillier C (1988) J De Phys 49:553

    Google Scholar 

  127. Goddard WA III, Dunning TH Jr, Hunt WJ, Hay PJ (1973) Acc Chem Res 6:368

    CAS  Google Scholar 

  128. Cullen J (1996) Chem Phys 202:217

    CAS  Google Scholar 

  129. Van Voorhis T, Head-Gordon M (2001) J Chem Phys 115:7814

    Google Scholar 

  130. Feynman RP, Cohen M (1956) Phys Rev 102:1189

    Google Scholar 

  131. Kwon Y, Ceperley DM, Martin RM (1993) Phys Rev B 48:12037

    CAS  Google Scholar 

  132. Holzmann M, Ceperley DM, Pierleoni C, Esler K (2003) Phys Rev E 68:046707

    CAS  Google Scholar 

  133. Greeff CW, Lester WA Jr (1998) J Chem Phys 109:1607

    CAS  Google Scholar 

  134. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026

    Google Scholar 

  135. Bachelet GB, Hamann DR, Schluter M (1982) Phys Rev B 26:4199

    CAS  Google Scholar 

  136. Burkatzki M, Filippi C, Dolg M (2008) J Chem Phys 129:164115

    CAS  PubMed  Google Scholar 

  137. Burkatzki M, Filippi C, Dolg M (2007) J Chem Phys 126:234105

    CAS  PubMed  Google Scholar 

  138. Casula M (2006) Phys Rev B 74:161102(R)

    Google Scholar 

  139. Umezawa N, Tsuneyuki S (2004) J Chem Phys 121:7070

    CAS  PubMed  Google Scholar 

  140. Toulouse J, Umrigar CJ (2007) Chem Phys 126:084102

    Google Scholar 

  141. Huang CJ, Umrigar CJ, Nightingale MP (1997) J Chem Phys 107:3007

    CAS  Google Scholar 

  142. Boys SF, Handy NC (1969) Proc R Soc Lon Ser A 310:43

    CAS  Google Scholar 

  143. Moskowitz JW, Schmidt KE (1990) J Chem Phys 93:4172

    Google Scholar 

  144. Filippi C, Umrigar CJ (1996) J Chem Phys 105:213

    CAS  Google Scholar 

  145. Sun ZW, Huang SY, Barnett RN, Lester WA Jr (1990) J Chem Phys 93:3326

    CAS  Google Scholar 

  146. Nightingale MP, Melik-Alaverdian V (2001) Phys Rev Lett 87:043401

    CAS  PubMed  Google Scholar 

  147. Lin X, Zhang H, Rappe AM (2000) J Chem Phys 112:2650

    CAS  Google Scholar 

  148. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  149. Casula M, Attaccalite C, Sorella S (2004) J Chem Phys 121:7110

    CAS  PubMed  Google Scholar 

  150. Sorella S (2001) Phys Rev B 64:024512

    Google Scholar 

  151. Luo H, Hackbusch W, Flad HJ (2009) J Chem Phys 131:104106

    Google Scholar 

  152. Aspuru-Guzik A (2004) Solving Schrodinger’s Equation Using Random Walks. Ph.D. thesis, UC Berkeley

    Google Scholar 

  153. Bressanini D, Morosi G, Mella M (2002) J Chem Phys 116:5345

    CAS  Google Scholar 

  154. Drummond ND, Needs RJ (2005) Phys Rev B 72:085124

    Google Scholar 

  155. Snajdr M, Rothstein SM (2000) J Chem Phys 112:4935

    CAS  Google Scholar 

  156. Umrigar CJ, Filippi C (2005) Phys Rev Lett 94:150201

    CAS  PubMed  Google Scholar 

  157. Angerson E, Bai Z, Dongarra J, Greenbaum A, Mckenney A, Du Croz J, Hammarling S, Demmel J, Bischof C, Sorensen D (1990) Lapack: a portable linear algebra library for high-performance computers. In: Proceedings of supercomputing, New York

    Google Scholar 

  158. Pollack L, Windus TL, de Jong WA, Dixon DA (2005) J Phys Chem A 109:6934

    CAS  PubMed  Google Scholar 

  159. Ceperley DM (1986) J Stat Phys 43:815

    Google Scholar 

  160. Williamson AJ, Hood RQ, Grossman JC (2001) Phys Rev Lett 87:246406

    CAS  PubMed  Google Scholar 

  161. Alfe D, Gillan MJ (2004) J Phys Condens Matter 16:L305

    CAS  Google Scholar 

  162. Manten S, Luchow A (2003) J Chem Phys 119:1307

    CAS  Google Scholar 

  163. Aspuru-Guzik A, Salomon-Ferrer R, Austin B, Lester WA Jr (2005) J Comput Chem 26:708

    CAS  PubMed  Google Scholar 

  164. Foster JM, Boys SF (1960) Rev Mod Phys 32:305

    CAS  Google Scholar 

  165. Reboredo FA, Williamson AJ (2005) Phys Rev B 71:121105

    Google Scholar 

  166. Liu SB, Perez-Jorda JM, Yang W (2000) J Chem Phys 112:1634

    CAS  Google Scholar 

  167. Austin B, Aspuru-Guzik A, Salomon-Ferrer R, Lester WA Jr (2006) In: Anderson JB, Rothstein SM (eds) Advances in quantum Monte Carlo, ACS symposium series 953. American Chemical Society, Washington, DC

    Google Scholar 

  168. Austin BM (2009) Enhancing the quantum Monte Carlo method for electronic properties of large molecules and excited tates. PhD thesis, UC Berkeley

    Google Scholar 

  169. Sun ZW, Reynolds PJ, Owen RK, Lester WA Jr (1989) Theor Chim Acta 75:353

    CAS  Google Scholar 

  170. Aspuru-Guzik A, Salomon-Ferrer R, Austin B, Perusquia-Flores R, Griffin MA, Oliva RA, Skinner D, Domin D, Lester WA Jr (2005) J Comput Chem 26:856

    CAS  PubMed  Google Scholar 

  171. Weber R, Gothandaraman A, Hinde RJ, Peterson GD (2011) IEEE Trans Parallel Distributed Syst 22:58

    Google Scholar 

  172. Meredith JS, Alvarez G, Maier TA, Schulthess TC, Vetter JS (2009) Parallel Comput 35:151

    Google Scholar 

  173. Anderson AG, Goddard WA III, Schröder P (2007) Comput Phys Commun 177:298

    CAS  Google Scholar 

  174. Gothandaraman A, Peterson GD, Warren GL, Hinde RJ, Harrison RJ (2008) Parallel Comput 34:278

    Google Scholar 

  175. Korth M, Luchow A, Grimme S (2008) J Phys Chem A 112:2104

    CAS  PubMed  Google Scholar 

  176. Luchow A (2002) Amolqc. Universitat Dusseldorf, Dusseldorf

    Google Scholar 

  177. Anderson D BOINC; see http://boinc.berkeley.edu

  178. Feldmann MT, Cummings JC, Kent DR IV, Muller RP, Goddard WA III (2008) J Comput Chem 29:8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

WAL was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under Contract No. DE-AC03-76 F00098. DYZ was supported by the National Science Foundation under grant NSF CHE-0809969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Lester Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zubarev, D.Y., Austin, B.M., Lester, W.A. (2011). Practical Aspects of Quantum Monte Carlo for the Electronic Structure of Molecules. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_9

Download citation

Publish with us

Policies and ethics