Skip to main content

Multireference State–Specific Coupled Cluster Theory with a Complete Active Space Reference

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry I

Abstract

The multireference state specific coupled cluster theory with a complete active space reference (CASCCSD) is described and its application to calculate electronic ground states is discussed. The working algorithm for the CASCCSD method was derived with a computer-based automated approach that generates the coupled-cluster diagrams and the corresponding amplitude equations. The method has been used to calculate the potential energy curves, spectroscopic parameters and vibrational levels of diatomic molecules. The test calculations have demonstrated high efficiency of the approach in comparison with other accurate approaches and in comparison with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schleyer PvR et al (ed) (2004) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  2. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  3. Head-Gordon M (1996) J Phys Chem 100:13213

    CAS  Google Scholar 

  4. Knowles P, Schütz M, Werner HJ (2000) Ab initio methods for electron correlation in molecules. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, proceedings, vol 3. John von Neumann institute for computing, Jülich, p 97

    Google Scholar 

  5. Coester F (1958) Nucl Phys 7:421

    Google Scholar 

  6. Kummel H (1960) Nucl Phys 17:477

    Google Scholar 

  7. Čížek J (1966) J Chem Phys 45(11):4256

    Google Scholar 

  8. Paldus J, Čížek J, Shavitt I (1972) Phys Rev A5:50

    Google Scholar 

  9. Purvis III GD, Bartlett RJ (1982) J Chem Phys 76(4):1910

    CAS  Google Scholar 

  10. Li X, Paldus J (1994) J Chem Phys 101:8812

    CAS  Google Scholar 

  11. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    CAS  Google Scholar 

  12. Bartlett RJ, Stanton JF (1994) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. Wiley, New York, p 65

    Google Scholar 

  13. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    CAS  Google Scholar 

  14. Oliphant N, Adamowicz L, (1991) J Chem Phys 94(2):1229

    CAS  Google Scholar 

  15. Oliphant N, Adamowicz L (1992) J Chem Phys 96:3739

    CAS  Google Scholar 

  16. Oliphant N, Adamowicz L (1993) Int Rev Phys Chem 12:339

    CAS  Google Scholar 

  17. Piecuch P, Oliphant N, Adamowicz L (1993) J Chem Phys 99(3):1875

    CAS  Google Scholar 

  18. Piecuch P, Adamowicz L (1994) J Chem Phys 100(8):5792

    CAS  Google Scholar 

  19. Ivanov VV, Adamowicz L (2000) J Chem Phys 112:9258

    CAS  Google Scholar 

  20. Ivanov VV, Adamowicz L (2000) J Chem Phys 113:8503

    CAS  Google Scholar 

  21. Ivanov VV, Lyakh DI, Adamowicz L (2005) Collect Czech Chem Commun 70:1017

    CAS  Google Scholar 

  22. Ivanov VV, Lyakh DI, Adamowicz L (2005) Mol Phys 103:2131

    CAS  Google Scholar 

  23. Ivanov VV, Adamowicz L, (2006) Lyakh DI Int J Quant Chem 106(14):2875

    CAS  Google Scholar 

  24. Ivanov VV, Adamowicz L, Lyakh DI (2006) J Chem Phys 124(18):184302

    PubMed  Google Scholar 

  25. Ivanov VV, Lyakh DI (2002) Kharkiv Univ Bull Chem Ser 549:15

    Google Scholar 

  26. Lyakh DI, Ivanov VV, Adamowicz L (2003) Kharkiv Univ Bull Chem Ser 596:9

    CAS  Google Scholar 

  27. Lyakh DI, Ivanov VV, Adamowicz L (2005) J Chem Phys 122:024108

    PubMed  Google Scholar 

  28. Mahapatra US, Datta B, Bandyopadhyay B, Mukherjee D (1998) State–specific muli–reference coupled cluster formulations: two paradigms. In: Löwdin PO (ed) Advances in Quantum Chemistry, vol 30. Academic, San Diego, p 163

    Google Scholar 

  29. Mahapatra US, Datta B, Mukherjee D (1998) Mol Phys 94:157

    CAS  Google Scholar 

  30. Mahapatra US, Datta B, Mukherjee D (1999) J Chem Phys 110:6171

    CAS  Google Scholar 

  31. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104(5):424

    CAS  Google Scholar 

  32. Laidig WD, Saxe P, Bartlett RJ (1987) J Chem Phys 86(2):887

    CAS  Google Scholar 

  33. Lyakh DI, Ivanov VV, Adamowicz L (2007) Mol Phys 105:1335

    CAS  Google Scholar 

  34. Lyakh DI, Ivanov VV, Adamowicz L (2008) J Chem Phys 128:074101

    PubMed  Google Scholar 

  35. Ivanov VV, Lyakh DI, Adamowicz L (2009) Phys Chem Chem Phys 11:2355

    CAS  PubMed  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Mastunada N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  37. Lyakh DI, Ivanov VV, Adamowicz L (2006) Theor Chem Acc 116:427

    CAS  Google Scholar 

  38. Crawford TD, Schaefer-III HF (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 14. Wiley, New York, p 33

    Google Scholar 

  39. Zaitsevsky AV (1993) Methods of many-body theory in quantum chemistry. Moscow University Press, Moscow (in Russian)

    Google Scholar 

  40. Harris FE, Monkhorst HJ, Freeman DL (1992) Algebraic and diagrammatic methods in many-fermion theory. Oxford University Press, New York

    Google Scholar 

  41. Paldus J, Wong HC (1973) Comput Phys Commun 6:1

    Google Scholar 

  42. Janssen CL, Schaefer III HF (1991) Theor Chem Acc 79:1

    CAS  Google Scholar 

  43. Li X, Paldus J (1994) J Chem Phy 101:8812

    CAS  Google Scholar 

  44. Harris FE (1999) Int J Quantum Chem 75:593

    CAS  Google Scholar 

  45. Kállay M, Surján P (2001) J Chem Phys 115:2945

    Google Scholar 

  46. Kállay M, Szalay PG, Surján PR (2002) J Chem Phys 117:980

    Google Scholar 

  47. Hirata S (2003) J Phys Chem A107:9887

    Google Scholar 

  48. Bochevarov AD, Sherrill CD (2004) J Chem Phys 121(8):3374

    CAS  PubMed  Google Scholar 

  49. Hanrath M, Engels-Putzka A (2010) J Chem Phys 133:064108

    PubMed  Google Scholar 

  50. Scheiner AC, Scuseria GE, Rice JE, Lee TJ, Schaefer HF (1987) J Chem Phys 87:5361

    CAS  Google Scholar 

  51. Musiał M, Kucharski SA, Bartlett RJ (2002) Mol Phys 100:1867

    Google Scholar 

  52. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Comput Phys Commun 149:71

    CAS  Google Scholar 

  53. Geertsen J, Rittby M, Bartlett RJ (1989) Chem Phys Lett 164:57

    CAS  Google Scholar 

  54. Sekino H, Bartlett RJ (1984) Int J Quantum Chem Symp 18:255

    CAS  Google Scholar 

  55. Kowalski K, Piecuch P (2004) J Chem Phys 120:1715

    CAS  PubMed  Google Scholar 

  56. Ivanic J (2003) J Chem Phys 119:9364

    CAS  Google Scholar 

  57. Levine IN (1975) Molecular Spectroscopy. Wiley, New York, p 491

    Google Scholar 

  58. Rydberg R (1931) Z Phys 73:373

    Google Scholar 

  59. Klein O (1932) Z Phys 76:226

    CAS  Google Scholar 

  60. Rees ALG (1947) Proc Phys Soc 59:998

    CAS  Google Scholar 

  61. Kosman WM, Hinze J (1975) J Phys Chem Ref Data 56:93

    CAS  Google Scholar 

  62. Stwalley WC, Zemke WT (1993) J Phys Chem Ref Data 22(1):87

    CAS  Google Scholar 

  63. Nooijen M (2002) Int J Mol Sci 3:656

    CAS  Google Scholar 

  64. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV: constants of diatomic molecules. Van Nostrand and Reinhold, New York

    Google Scholar 

  65. Dunning TH (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  66. Kendall R, Dunning T Jr, Harrison R (1992) J Chem Phys 96:6796

    CAS  Google Scholar 

  67. Li X, Paldus J (2003) J Chem Phys 118:2470

    CAS  Google Scholar 

  68. Stwalley WC, Zemke WT, Yang SC (1991) J Phys Chem Ref Data 20:153

    CAS  Google Scholar 

  69. Le Roy RJ (2007) Level 8.0: A Computer program for solving the radial Schrodinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics research report CP-663. See http://leroy.uwaterloo.ca/programs/

  70. Abrams ML, Sherrill CD (2003) J Chem Phys 118:1604

    CAS  Google Scholar 

  71. Klimenko TA, Ivanov VV, Lyakh DI (2010) Ukr J Phys 55(6):657

    CAS  Google Scholar 

  72. Klimenko TA, Ivanov VV, Lyakh DI, Adamowicz L (2010) Chem Phys Lett 493:173

    CAS  Google Scholar 

  73. Coxon JA, Hajigeorgiou PG (2006) J Phys Chem A 110:6261

    CAS  PubMed  Google Scholar 

  74. Di-Lonardo G, Douglas AE (1973) Can J Phys 51:434

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir V. Ivanov or Ludwik Adamowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ivanov, V.V., Lyakh, D.I., Klimenko, T.A., Adamowicz, L. (2011). Multireference State–Specific Coupled Cluster Theory with a Complete Active Space Reference. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_3

Download citation

Publish with us

Policies and ethics