Skip to main content

Excited State Structural Analysis: TDDFT and Related Models

  • Chapter
  • First Online:
  • 2410 Accesses

Abstract

We review and further develop the excited state structural analysis (ESSA) which was proposed many years ago [Luzanov AV (1980) Russ Chem Rev 49: 1033] for semiempirical models of \( \pi {\pi^{\ast}} \)-transitions and which was extended quite recently to the time-dependent density functional theory. Herein we discuss ESSA with some new features (generalized bond orders, similarity measures etc.) and provide additional applications of the ESSA to various topics of spectrochemistry and photochemistry. The illustrations focus primarily on the visualization of electronic transitions by portraying the excitation localization on atoms and molecular fragments and by detailing excited state structure using specialized charge transfer numbers. An extension of ESSA to general-type wave functions is briefly considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramamurthy V, Schanze KS (eds) (2001) Understanding and manipulating excited-state processes. Molecular and supramolecular photochemistry, vol 8. Marcel Dekker, New York

    Google Scholar 

  2. Lanzani G (ed) (2006) Photophysics of molecular materials. From single molecules to single crystals. Wiley, Berlin

    Google Scholar 

  3. Gell C, Brockwell D, Smith A (2006) Handbook of single molecule fluorescence spectroscopy. Oxford University Press, USA

    Google Scholar 

  4. Gräslund A, Rigler R, Widengren J (eds) (2010) Single molecule spectroscopy in chemistry, physics and biology. Springer, New York

    Google Scholar 

  5. Ehara M, Nakatsuji H (2010) In: Cársky P, Paldus J, Pittner J (eds) Recent progress in coupled cluster methods, vol 11, Challenges and advances in computational chemistry and physics. Springer, Dordrecht/Heidelberg/London/New York, p 79

    Google Scholar 

  6. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009

    CAS  PubMed  Google Scholar 

  7. Olivucci M (ed) (2005) Computational photochemistry. Elsevier, Amsterdam

    Google Scholar 

  8. Marques MAL, Ullrich C, Nogueira F, Rubio A, Gross EKU (eds) (2006) Time-dependent density-functional theory, vol 706, Lecture notes in physics. Springer, Berlin

    Google Scholar 

  9. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge University Press, Cambridge

    Google Scholar 

  10. Fedorov DG, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC, Boca Raton

    Google Scholar 

  11. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135

    CAS  Google Scholar 

  12. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21

    CAS  Google Scholar 

  13. Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory, 2nd edn. Wiley, Weinheim

    Google Scholar 

  14. Sholl D, Steckel JA (2009) Density functional theory: a practical introduction. Wiley, Hoboken

    Google Scholar 

  15. Casida ME (2009) J Mol Struct Theochem 914:3

    CAS  Google Scholar 

  16. Blaisot JP, Ripka G (1986) Quantum theory of finite systems. Massachusetts Institute of Technology, Massachusetts

    Google Scholar 

  17. Luzanov AV, Zhikol OA (2010) Int J Quant Chem 110:902

    CAS  Google Scholar 

  18. Edgar AP (1902) Tales, vol 4, The complete works of Edgar Allan Poe. Knickerbocker, New York, p 175

    Google Scholar 

  19. Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  20. Carbó-Dorca R, Girones X, Mezey PG (eds) (2001) Fundamentals of molecular similarity, Mathematical and computational chemistry. Kluwer, New York

    Google Scholar 

  21. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  22. Luzanov AV, Sukhorukov AA, Umanski VE (1974) Theor Exp Chem 10:354

    Google Scholar 

  23. Luzanov AV (1980) Russ Chem Rev 49:1033

    Google Scholar 

  24. Blagoy Yu P, Sheina GG, Luzanov AV, Silina LK, Pedash VF, Rubin Yu V, Leibina EA (1980) Int J Quant Chem 17:913

    Google Scholar 

  25. Fabian J, Mehlhorn A, Fratev F (1980) Int J Quant Chem 17:235

    CAS  Google Scholar 

  26. Czuchajowski L, Wisor AK (1986) J Phys Chem 90:1541

    Google Scholar 

  27. Kachkovski AD (1994) Dyes Pigments 24:171

    CAS  Google Scholar 

  28. Reinhardt M, Kirschke K, Baumann H (1995) J Mol Struct 348:417

    CAS  Google Scholar 

  29. Mitina VG, Ivanov VV, Ponomarev OA, Sleta LA, Shershukov VM (1996) Mol Engin 6:249

    CAS  Google Scholar 

  30. Doroshenko AO, Kirichenko AV, Mitina VG, Ponomarev OA (1996) J Photochem Photobiol A Chem 94:15

    CAS  Google Scholar 

  31. Doroshenko AO, Grigorovich AV, Posokhov EA, Pivovarenko VG, Demchenko AP (1999) Mol Engin 8:199

    Google Scholar 

  32. Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000) J Phys Org Chem 13:253

    CAS  Google Scholar 

  33. Luzanov AV (2002) J Struct Chem 43:711

    CAS  Google Scholar 

  34. Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM, Skripkin VT, Shershukov VM (2002) Photochem Photobiol Sci 1:92

    CAS  PubMed  Google Scholar 

  35. Nijegorodov N, Zvolinski V, Luhanga PVC (2008) J Photochem Photobiol A Chem 196:219

    CAS  Google Scholar 

  36. Luzanov AV, Prezhdo OV (2005) Int J Quant Chem 102:582

    CAS  Google Scholar 

  37. Löwdin P-O (1955) Phys Rev 97:1490

    Google Scholar 

  38. McWeeny R (1956) Proc Roy Soc Ser A 237:355

    CAS  Google Scholar 

  39. Thouless DJ (1961) Nucl Phys 22:78

    CAS  Google Scholar 

  40. Luzanov AV (1975) Theor Exp Chem 9:567

    Google Scholar 

  41. Mukamel S, Tretiak S (2002) Chem Rev 102:3171

    PubMed  Google Scholar 

  42. McWeeny R (1992) Methods of molecular quantum mechanics, 2nd edn. Academic, London

    Google Scholar 

  43. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic, New York

    Google Scholar 

  44. Luzanov AV (1978) Theor Exp Chem 13:433

    Google Scholar 

  45. Luzanov AV, Mestechkin MM (1981) Theor Math Phys 48:740

    Google Scholar 

  46. Martin RL (2003) J Chem Phys 118:4775

    CAS  Google Scholar 

  47. Mayer I (2007) Chem Phys Lett 437:284

    CAS  Google Scholar 

  48. Batista ER, Martin RL (2005) J Phys Chem A 109:3128

    CAS  PubMed  Google Scholar 

  49. Luzanov AV, Umanski VE (1977) Theor Exp Chem 13:162

    Google Scholar 

  50. Luzanov AV, Pedash Yu F, Mohamad S (1990) Theor Exp Chem 26:485

    Google Scholar 

  51. Luzanov AV, Zhikol OA (2005) Int J Quant Chem 104:167

    CAS  Google Scholar 

  52. Ermolaev VL, Terenin AN (1960) Sov Phys Usp 3:423

    Google Scholar 

  53. Shigorin DN (1977) Zh Fiz Khim 51:1894

    CAS  Google Scholar 

  54. Turro NJ (1991) Modern molecular photochemistry. University Science, Mill Valley

    Google Scholar 

  55. Luzanov AV, Pedash VF (1979) Theor Exp Chem 15:338

    Google Scholar 

  56. Ohta T, Kuroda H, Kunii TL (1970) Theor Chim Acta 19:167

    CAS  Google Scholar 

  57. Luzanov AV, Prezhdo OV (2006) J Chem Phys 124:224109

    CAS  PubMed  Google Scholar 

  58. Staroverov VN, Davidson ER (2000) Chem Phys Lett 330:161

    CAS  Google Scholar 

  59. Alcoba DR, Bochicchio RC, Lain L, Torre A (2006) Chem Phys Lett 429:286

    CAS  Google Scholar 

  60. Head-Gordon M (2003) Chem Phys Lett 380:488

    CAS  Google Scholar 

  61. Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175

    CAS  Google Scholar 

  62. Wiberg K (1968) Tetrahedron 24:1083

    CAS  Google Scholar 

  63. Mayer I (1983) Chem Phys Lett 97:270

    CAS  Google Scholar 

  64. de Giambiagi MS, Giambiagi M, Jorge FE (1985) Theor Chim Acta 68:337

    Google Scholar 

  65. Ponec R, Uhlík F, Cooper DL, Jug K (1996) Croat Chem Acta 69:933

    CAS  Google Scholar 

  66. Yamasaki T, Goddard WA III (1998) J Phys Chem A 102:2919

    CAS  Google Scholar 

  67. Alcoba DR, Bochicchio RC, Lain L, Torre A (2008) Phys Chem Chem Phys 10:5144

    CAS  PubMed  Google Scholar 

  68. Doroshenko AO (2009) J Mol Struct 933:169

    CAS  Google Scholar 

  69. Chepeleva LV, Matsakov AY, Kondratyuk ZA, Yaremenko FG, Doroshenko AO (2010) J Photochem Photobiol A Chem 209:163

    CAS  Google Scholar 

  70. Svechkarev D, Doroshenko A, Baumer V, Dereka B (2011) J Luminescence 131:253

    CAS  Google Scholar 

  71. Kawashima Y, Hashimoto T, Nakano H, Hirao K (1999) Theor Chem Acc 102:49

    CAS  Google Scholar 

  72. Parac M, Grimme S (2003) Chem Phys 292:11

    CAS  Google Scholar 

  73. Halasinski TM, Weisman JL, Ruiterkamp R, Lee TJ, Salama F, Head-Gordon M (2003) J Phys Chem A 107:3660

    CAS  Google Scholar 

  74. Malloci G, Mulas G, Cappellini G, Joblin C (2007) Chem Phys 340:43

    CAS  Google Scholar 

  75. Kadantsev ES, Stott MJ, Rubio A (2006) J Chem Phys 124:134901

    PubMed  Google Scholar 

  76. Clar E (1964) Polycyclic hydrocarbons, vol 1. Academic, London

    Google Scholar 

  77. Langlet J (1975) Theor Chim Acta 38:199

    CAS  Google Scholar 

  78. de Meijere A, Kozhushkov SI, Fokin AA, Emme I, Redlich S, Schreiner PR (2003) Pure Appl Chem 75:549

    Google Scholar 

  79. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371

    CAS  Google Scholar 

  80. Hochstrasser RM, Whiteman JD (1972) J Chem Phys 56:5945

    CAS  Google Scholar 

  81. Parson WW (2007) Modern optical spectroscopy. Springer, New York

    Google Scholar 

  82. Fujioka Y (1984) Bull Chem Soc Jap 57:3494

    CAS  Google Scholar 

  83. Fukui K, Morokuma K, Yonezawa T (1961) Bull Chem Soc Jap 34:1178

    CAS  Google Scholar 

  84. Cowan DO, Koziar JC (1975) J Am Chem Soc 97:249

    CAS  Google Scholar 

  85. Lamola AA (1970) Pure Appl Chem 24:599

    CAS  PubMed  Google Scholar 

  86. Boggio-Pasqua M, Groenhof G, Schafer LV, Grubmuller H, Robb MA (2007) J Am Chem Soc 129:10996

    CAS  PubMed  Google Scholar 

  87. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, Singapore

    Google Scholar 

  88. Zimmerman HE, Swenton JS (1967) J Am Chem Soc 89:906

    CAS  Google Scholar 

  89. Zimmerman HE, Binkley RW, McCullough JJ, Zimmerman GA (1967) J Am Chem Soc 89:6589

    CAS  Google Scholar 

  90. Weltin EE (1973) J Am Chem Soc 95:7650

    CAS  Google Scholar 

  91. Vysotskii YB, Sivyakova LN (1986) Khim Geterotsikl Soedin (2): 173

    Google Scholar 

  92. Lee GH, Park Y-T (1994) Bull Korean Chem Soc 15:857

    CAS  Google Scholar 

  93. Zimmerman HE, Alabugin IV (2000) J Am Chem Soc 122:952

    CAS  Google Scholar 

  94. Zimmerman HE (2005) In: Olivucci M (ed) Computational photochemistry. Elsevier, London, p 255

    Google Scholar 

  95. Srinivasan R (1961) J Am Chem Soc 83:2806

    CAS  Google Scholar 

  96. Samuni U, Kahana S, Haas Y (1998) J Phys Chem 102:4758

    CAS  Google Scholar 

  97. Dauben WG, Cargill RL (1961) Tetrahedron 12:186

    CAS  Google Scholar 

  98. Jones LB, Jones VK (1968) J Am Chem Soc 90:1540

    CAS  Google Scholar 

  99. Zimmerman HE, Armesto D (1996) Chem Rev 96:3065

    CAS  PubMed  Google Scholar 

  100. Frutos LM, Sancho U, Castano O (2004) Org Lett 6:1229

    CAS  PubMed  Google Scholar 

  101. Schulten K, Ohmine I, Karplus M (1976) J Chem Phys 64:4422

    CAS  Google Scholar 

  102. Neuenschwander M (1986) Pure Appl Chem 58:55

    CAS  Google Scholar 

  103. Luzanov AV, Wulfov AL, Krouglov VO (1992) Chem Phys Lett 197:614

    CAS  Google Scholar 

  104. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  105. Luzanov AV (2011) Int J Quant Chem 111:2196

    CAS  Google Scholar 

  106. Kaplan IG (2007) J Mol Struct 838:39

    CAS  Google Scholar 

  107. Kaplan IG (2007) Int J Quant Chem 107:2595

    CAS  Google Scholar 

  108. Schirmer J, Dreuw A (2007) Phys Rev A 75:022513

    Google Scholar 

  109. Schirmer J, Dreuw A (2008) Phys Rev A 78:056502

    Google Scholar 

  110. Niehaus TA, March NH (2009) Theor Chem Acc 125:427

    Google Scholar 

  111. Dewar MJS (1993) Org Mass Spectrom 28:305

    CAS  Google Scholar 

  112. Fabian J (2010) Dyes Pigments 84:36

    CAS  Google Scholar 

  113. Rohrdanz MA, Martins KM, Herbert JM (2009) J Chem Phys 130:054112

    PubMed  Google Scholar 

  114. Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818

    CAS  PubMed  Google Scholar 

  115. Ipatov A, Hesselmann A, Gorling A (2010) Int J Quant Chem 110:2202

    CAS  Google Scholar 

  116. Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) J Chem Theor Comput 6:2071

    CAS  Google Scholar 

  117. Cui G, Yang W (2010) Mol Phys 108:2745

    CAS  Google Scholar 

  118. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2010) J Chem Theor Comput 6:1532

    CAS  Google Scholar 

  119. Liu X, Yang D, Ju H, Teng F, Hou Y, Lou Z (2011) Chem Phys Lett 503:75

    CAS  Google Scholar 

  120. Liu X, Zhang X, Hou Y, Teng F, Lou Z (2011) Chem Phys 381:100

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are very grateful to A. O. Doroshenko, I. G. Kaplan, and O. V. Shishkin for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Luzanov .

Editor information

Editors and Affiliations

Appendix

Appendix

We consider the conventional exciton-like model [79, 80], slightly modified here for triplet states of a finite-size system (assembly) of m weakly interacting identical subunits (fragments) \( {\{ {A_k}\}_{{1 \leqslant k \leqslant m}}} \). Let \( {\Xi_k} \) be the the kth basis vector which corresponds to the local excitation of the kth site of the assembly, viz. \( {\Xi_k} = \left| {A_1^0 \ldots A_{{k - 1}}^0\,A_k^{*}\,A_{{k - 1}}^0 \ldots A_m^0} \right\rangle \). Then in a tight-binding approximation we can approximate the exciton-like Hamiltonian matrix \( \Lambda = \left\| {{\Lambda_{{kl}}}} \right\| \), as follows

$$ {\Lambda_{{kl}}} = ({\lambda_0} - {\upsilon_k}\,{V_{*}}){\delta_{{kl}}} + \{ {K_{*}}{\mbox{ if }}{A_k}{\mbox{ and }}{A_l}{\mbox{ are neighbors, 0 otherwise\} }} $$

where \( {\lambda_0} \) is an excitation energy of the isolated fragment; the positive \( \,{V_{*}} \) and \( {K_{*}} \) are effective local level shift and exchange parameters, respectively. The factor \( {\upsilon_k} \) in term \( {\upsilon_k}{V_{*}} \) is equal to a number of neighbours of site \( {A_k} \), which takes into account the local environment effects.

Eigenvalues, \( {\lambda_k} \), of \( \Lambda \) are excitation energies of the whole system. For instance, in a linear trimer we have

$$ \Lambda = \left\| \begin{array}{ccc} {\lambda_0} - {V_{*}}& {K_{*}} & 0 \hfill \\ {K_{*}} & \ \ {\lambda_0} - 2{V_{*}}& {K_{*}} \\ 0&{K_{*}}&{\lambda_0} - {V_{*}}\\ \end{array} \right\| $$

with simply computed excitation energies. They take the form

$$\begin{array}{ll} {\lambda_1} &= {\lambda_0} - {V_{*}}(\sqrt {{1 + 2{q_{*}}^2}} + 3)\,/2,\,{\lambda_2} = {\lambda_0} - {J_{*}},\\ {\lambda_3} &= {\lambda_0} + {V_{*}}(\sqrt {{1 + 2{q_{*}}^2}} - 3)\,/2 \end{array}$$

where the dimensionless parameter \( {q_{*}} = 2{K_{*}}\,/{V_{*}} \) is used. The corresponding (non-normalized) eigenvectors are of the form

$$ \left\| \begin{gathered} - {q_{*}} \hfill \\ \,\,\sqrt {{1 + 2{q_{*}}^2}} + 1 \hfill \\ - {q_{*}} \hfill \\ \end{gathered} \right\|\;\left\| \begin{gathered} \,\,\,\,1 \hfill \\ \,\,\,0 \hfill \\ - 1\, \hfill \\ \end{gathered} \right\|,\;\left\| \begin{gathered} \,\,\,\,\,\,\,{q_{*}} \hfill \\ \,\,\sqrt {{1 + 2{q_{*}}^2}} - 1 \hfill \\ \,\,\,\,\,\,\,{q_{*}} \hfill \\ \end{gathered} \right\| $$

From them we obtain the distribution localization indices \( L_A^{*}\, \) by merely squaring the corresponding “coordinates” in the above eigenvectors. The results become more clear for very weakly coupled fragments (chromophores) when \( {q_{*}} \ll 1 \), and we have

$$\begin{array}{ll} {\lambda_1} &= {\lambda_0} - {J_{*}} - 2{K_{*}}^2/{V_{*}},\;\{ L_A^{*}\,\} = \{ 1/2 - {({K_{*}}/{V_{*}})^2},\,\,\,2\,{({K_{*}}/{V_{*}})^2},\\ &\qquad\qquad\qquad\ 1/2 - {({K_{*}}/{V_{*}})^2}\}; \end{array}$$
$$ {\lambda_2} = {\lambda_0} - {V_{*}},\;\{ L_A^{*}\} = \{ 1/2,\,\,\,0,\,\,\,1/2\}; $$
$$ {\lambda_3} = {\lambda_0} - 2{J_{*}} + 2{K_{*}}^2/{V_{*}},\;\{ L_A^{*}\} = \{ {({K_{*}}/{V_{*}})^2},\,\,\,1 - 2\,{({K_{*}}/{V_{*}})^2},\,\,{({K_{*}}/{V_{*}})^2}\}. $$

We see that the lowest excitation is predominantly localized on the internal fragment A whereas the rest are shared between the two terminal fragments of the trimer. The qualitatively similar picture is appropriate in the case of moderate values of \( {q_{*}} \) as well.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Luzanov, A.V., Zhikol, O.A. (2011). Excited State Structural Analysis: TDDFT and Related Models. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_14

Download citation

Publish with us

Policies and ethics