Vanadium pp 3-31 | Cite as

Inorganic Chemistry of Vanadium

  • Kan KanamoriEmail author
  • Kiyoshi Tsuge


Stereochemistry and redox property are essential factors in considering the roles of vanadium in biological systems. Coordination geometries adopted by vanadium ions with oxidation numbers +3, +4, and +5 are summarized in this chapter to provide a clue for determining the structure-function relationship of biological vanadium species. Vanadium can have a variety of geometries and its geometry is sometimes flexible. This property may be important for metals in biological systems. The electrochemical properties of complexes in each oxidation state are described by referring to typical mononuclear complexes. The redox potentials of the complexes depend largely on the ligand combination. A comparison of complexes with and without oxo ligands reveals that strong electron donation from oxo ligands stabilizes vanadium ions in higher oxidation states. Additionally, the proton-coupled equilibrium between oxo and aqua ligands imposes a significant effect on the redox behavior of vanadium complexes. Chemical redox reactions related to vanadium catalysts are also described.


Coordination stereochemistry Coordination number Redox chemistry Redox potential 


  1. 1.
    Atkins P, Overton T, Rourke J, Weller M, Armstrong F (2006) Shriver & Atkins inorganic chemistry, 4th edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Fenton DE (1995) Biocoordination chemistry. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Elvington K, Gonzalez A, Pettersson L (1996) Speciation in vanadium bioinorganic systems. 2. An NMR, ESR, and potentiometric study of the aqueous H+–vanadate–maltol system. Inorg Chem 35:3388–3393CrossRefGoogle Scholar
  4. 4.
    Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Choukroun R, Moumboko P, Chevalier S, Etienne M, Donnadieu B (1998) Cationic homoleptic vanadium(II), (IV), and (V) complexes arising from protonolysis of [V(NEt)4]. Angew Chem Int Ed 37:3169–3172CrossRefGoogle Scholar
  6. 6.
    Dubberley SR, Tyrell BR, Mountford P (2001) Tetrakis(dimethylamido)vanadium(IV). Acta Cryst C57:902–904Google Scholar
  7. 7.
    Song JI, Gambarotta S (1996) Preparation, characterization, and reactivity of a diamagnetic vanadium nitride. Chem Eur J 2:1258–1263CrossRefGoogle Scholar
  8. 8.
    Komuro T, Matsuo T, Kawaguchi H, Tatsumi K (2005) Synthesis of a vanadium(III) tris(arylthiolato) complex and its reactions with azide and azo compounds: formation of a sulfenamide complex via cleavage of an azo N=N bond. Inorg Chem 44:175–177CrossRefGoogle Scholar
  9. 9.
    Messerschmidt A, Wever R (1996) X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci USA 93: 392–396CrossRefGoogle Scholar
  10. 10.
    Messerschmidt A, Prade L, Wever R (1997) Implications for the catalytic mechanisms of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol Chem 378:309–315CrossRefGoogle Scholar
  11. 11.
    Addison AW, Rao TN, Reedijk J, Jacobus VR, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands: the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidzol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans 1349–1356Google Scholar
  12. 12.
    Baruah B, Rath SP, Chakravorty A (2004) A novel pentacoordinated dioxovanadium(V) salicylaldiminate: solvent specific crystallization of dimorphs with contrasting coordination geometries, ligand conformations and supramolecular architectures. Eur J Chem 9: 1873–1878Google Scholar
  13. 13.
    Cornman CR, Geiser-Bush KM, Rowley SP, Boyle PD (1997) Structural and electron paramagnetic resonance studies of the square pyramidal to trigonal bipyramidal distortion of vanadyl complexes containing sterically crowded Schiff base ligands. Inorg Chem 36:6401–6408CrossRefGoogle Scholar
  14. 14.
    Wikete C, Wu P, Zampella G, De Giola L, Licini G, Rehder D (2007) Glycine-and sarcosine-based models of vanadium-dependent haloperoxidases in sulfoxygenation reactions. Inorg Chem 46:196–207CrossRefGoogle Scholar
  15. 15.
    Santoni G, Licini G, Rehder D (2003) Catalysis of oxo transfer to prochiral sulfides by oxovanadium(V) compounds that model the active center of haloperoxidases. Chem Eur J 9:4700–4708CrossRefGoogle Scholar
  16. 16.
    Hsu HF, Chu WC, Hung CH, Liao JH (2003) The first example of a seven-coordinate vanadium(III) thiolate complex containing the hydrazine molecule, an intermediate of nitrogen fixation. Inorg Chem 42:7369–7371CrossRefGoogle Scholar
  17. 17.
    Groysman S, Goldberg I, Goldschmidt Z, Kol M (2005) Vanadium(III) and vanadium(V) amine tris(Phenolate) complexes. Inorg Chem 44:5073–5080CrossRefGoogle Scholar
  18. 18.
    Aghabozorg H, Sadr-khanlou E (2007) 2,9-Dimethyl-1,10-phenanthrolinium dioxo(pyridine-2,6-dicarboxylato)vanadate(V) Monohydrate. Acta Cryst E63:m1753Google Scholar
  19. 19.
    Nakajima K, Tokida N, Kojima M, Fujita J (1992) Structures of two geometrical isomers of dioxo[(S)-N-salicylidene-3-aminopyrrolidine]vanadium(V). Bull Chem Soc Jpn 65:1725–1727CrossRefGoogle Scholar
  20. 20.
    Santoni G, Rehder D (2003) Structural models for the reduced form of vanadate-dependent peroxidases: vanadyl complexes with bidentate chiral Schiff base ligands. J Inorg Biochem 98:758–764CrossRefGoogle Scholar
  21. 21.
    Lorber C, Choukroun R, Donnadieu B (2003) Synthesis and crystal structure of unprecedented phosphine adducts of d1-aryl imido–vanadium(IV) complexes. Inorg Chem 42:673–675CrossRefGoogle Scholar
  22. 22.
    Stiefel EI, Eisenberg R, Rosenberg RC, Gray HB (1966) Characterization and electronic structures of six-coordinate trigonal-prismatic complexes. J Am Chem Soc 88:2956–2966CrossRefGoogle Scholar
  23. 23.
    Kondo M, Minakoshi S, Iwata K, Shimizu T, Matsuzaka H, Kamigata N, Kitagawa S (1996) Crystal structure of a tris(dithiolene) vanadium(IV) complex having unprecedented D 3h symmetry. Chem Lett 25:489–490CrossRefGoogle Scholar
  24. 24.
    Eisenberg R, Stiefel EI, Rosenberg RC, Gray HB (1966) Six-coordinate trigonal-prismatic complexes of first-row transition metals. J Am Chem Soc 88:2874–2876CrossRefGoogle Scholar
  25. 25.
    Welch JH, Bereman RD, Singh P (1988) Synthesis and characterization of two vanadium complexes of the 1,2-dithiolene 5,6-dihydro-1,4-dithiin-2,3-dithiolate. Crystal structure of [(C4H9)4N][V(DDDT)3]. Inorg Chem 27:2862–2868CrossRefGoogle Scholar
  26. 26.
    Stiefel EI, Dori Z, Gray HB (1967) Octahedral vs. trigonal-prismatic coordination. Structure of (Me4N)2[V(mnt)3]. J Am Chem Soc 89:3353–3354CrossRefGoogle Scholar
  27. 27.
    Cooper SR, Koh YB, Raymond KN (1982) Synthetic, structural, and physical studies of bis(triethylammonium) tris(catecholato)vanadate(IV), potassium bis(catecholato) oxovanadate(IV), and potassium tris(catecholato)vanadate(III). J Am Chem Soc 104:5092–5102CrossRefGoogle Scholar
  28. 28.
    Branca M, Micera G, Dessi A, Sanna D, Raymond KN (1990) Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorg Chem 29:1586–1589CrossRefGoogle Scholar
  29. 29.
    Cass ME, Gordon NR, Pierpont CG (1986) Catecholate and semiquinone complexes of vanadium. Factors that direct charge distribution in metal–quinone complexes. Inorg Chem 25:3962–3967CrossRefGoogle Scholar
  30. 30.
    Kanamori K, Kusajima K, Yachi H, Suzuki H, Miyashita Y, Okamoto K (2007) Synthesis, x-ray structures, and solution properties of vanadium(III) and –(IV) complexes with N-(2-hydroxyphenyl)-N-(2-pyridylmethyl)amine. Bull Chem Soc Jpn 80:324–328CrossRefGoogle Scholar
  31. 31.
    Morgenstern B, Steinhauser S, Hogetschweiler K, Garribba E, Micera G, Sanna D, Nagy L (2004) Complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol and related ligands. Inorg Chem 43:3116–3126CrossRefGoogle Scholar
  32. 32.
    Drew RE, Einstein FWB (1972) The crystal structure of ammonium oxodiperoxoamminevanadate(V). Inorg Chem 11:1079–1083CrossRefGoogle Scholar
  33. 33.
    Crans DC, Keramidas AD, Hoover-Litty H, Anderson OP, Miller MM, Lemoine LM, Pleasic-Williams S, Vandenberg M, Rossomando AJ, Sweet LJ (1997) Synthesis, structure, and biological activity of a new insulinomimetic peroxovanadium compound: bisperoxovanadium imidazole monoanion. J Am Chem Soc 119:5447–5448CrossRefGoogle Scholar
  34. 34.
    Smatanová IK, Marek J, Švančárek P, Schwendt P (2000) Bis(tetra-n-butylammonium) bis[(mandelato)oxo(peroxo)vanadate(V)] mandelic acid solvate. Acta Cryst C56:154–155Google Scholar
  35. 35.
    (a) Towns RLR, Levenson RA (1972) Structure of the seven-coordinate cyano complex of vanadium(III). J Am Chem Soc 94:4345–4346. (b) Levenson RA, Towns RLR (1974) Crystal and molecular structure of potassium heptacyanovanadate(III) dihydrate. Inorg Chem 13: 105–109Google Scholar
  36. 36.
    Neumann R, Assael I (1989) Vanadium(V)/vanadium(III) redox couple in acidic organic media. Structure of a vanadium(III)-tetraethylene glycol pentagonal-bipyramidal complex [[V(teg)(Br)2]+Br]. J Am Chem Soc 111:8410–8413CrossRefGoogle Scholar
  37. 37.
    Dutton JC, Fallon GD, Murray KS (1990) A macrocyclic binuclear vanadium(III) complex with di-µ-alkoxo bridging and pentacoordinate-bipyramidal metal co-ordination. X-ray crystal structure of [V2L(H2O)4][ClO4]4·2H2O (H2L = 1,7,14,20-tetramethyl-2,6,15,19-tetra-aza[7,7](2,6)-pyridinophane-4,7-diol). J Chem Soc Chem Commun 64–65Google Scholar
  38. 38.
    Stomberg R (1986) The crystal structure of potassium bis(oxalate)oxoperoxovanadate(V) hemihydrate, K3[VO(O2)(C2O4)]·½H2O, and potassium bis(oxalate)dioxovanadate(V) trihydrate, K3[VO2(C2O4)2]·3H2O. Acta Chem Scand A40:168–176CrossRefGoogle Scholar
  39. 39.
    Gyepes R, Pacigová S, Sivák M, Tatiersky J (2009) Experimental and computational evidence of solid-state anion–π and π–π interactions in [VO(O2)(L)(pa)]·xH2O complexes (L = picolinate, pyrazinate or quinolinate; pa = picolinamide). New J Chem 33:1515–1522CrossRefGoogle Scholar
  40. 40.
    Szentivanyi H, Stomberg R (1983) The crystal structure of ammonium (2,2′-bipyridine) oxodiperoxovanadate(V) tetrahydrate, NH4[VO(O2)2(C10H8N2)]·4H2O, at –100°C. Acta Chem Scand A37:553–559CrossRefGoogle Scholar
  41. 41.
    Castro SL, Martin JD, Christou G (1993) A new vanadium(V) persulfide complex: (NEt4)[VO(S2)2(bpy)]. Inorg Chem 32:2978–2980CrossRefGoogle Scholar
  42. 42.
    Al-Ani FT, Hughes DL, Pickett CJ (1988) Preparation, x-ray crystal structure, and properties of [V(S2)2(terpy)]: intramolecular coupling of the sulfide ligands of [VS4]3-. J Chem Soc Dalton Trans 1705–1707CrossRefGoogle Scholar
  43. 43.
    Einstein FEB, Enwall E, Morris DM, Sutton D (1971) Crystal and molecular structure and vibrational spectra of the vanadium(V) oxide trinitrate–acetonitrile complex, VO(NO3)3·CH3CN. Inorg Chem 10:678–686CrossRefGoogle Scholar
  44. 44.
    Kanamori K, Kameda E, Okamoto K (1996) Heptacoordinate vanadium(III) complexes containing a didentate sulfate ligand. X-ray structures of [V2(SO4)3{N, N′-bis(2-pyridylmethyl)-1,2-ethanediamine}2] and [V(SO4){N, N, N′, N′-tetrakis(2-pyridylmethyl)-1,2-ethanediamine}]+ and their solution properties. Bull Chem Soc Jpn 69:2901–2909CrossRefGoogle Scholar
  45. 45.
    Chatterjee M, Maji M, Ghosh S, Mak TCW (1998) Studies of V(III) complexes with selected α-N-heterocyclic carboxylato NO donor ligands: structure of a new seven-coordinated pentagonal bipyramidal complex containing picolinato ligands. J Chem Soc Dalton Trans 3641–3645Google Scholar
  46. 46.
    Okamoto K, Hidaka J, Fukagawa M, Kanamori K (1992) Structure of trisaqua (nitrilotriacetato)vanadium(III) tetrahydrate. Acta Cryst C48:1025–1027Google Scholar
  47. 47.
    Shimoi M, Saito Y, Ogino H (1991) Syntheses and crystal structures of seven-coordinate (ethylenediamine-N, N, N′, N′-tetraacetato)aquavanadate(III) complexes. Bull Chem Soc Jpn 64:2629–2634CrossRefGoogle Scholar
  48. 48.
    Ogino H, Shimoi M, Saito Y (1989) Structural identification of the reactive vanadium(III) intermediate formed in the electron-transfer reactions of [N′-(2-hydroxyethyl)ethylenediamine-N, N, N′-triacetato]aquavanadium(III) complex ([V(hedtra)(H2O)]) with halogenopentaamminecobalt(III) complex: x-ray crystal structure of [V(hedtra)(H2O)]·2H2O and K[VO(hedtra)]·H2O. Inorg Chem 28:3596–3600CrossRefGoogle Scholar
  49. 49.
    Miyoshi K, Wang J, Mizuta T (1995) An x-ray crystallographic study on the molecular structures of seven-coordinate (ethylenediamine-N, N, N′-triacetato-N′-acetic acid)(aqua)-titanium(III) and -vanadium(III), [TiIII(hedta)(H2O)]·H2O and [VIII(hedta)(H2O)]·H2O. Inorg Chim Acta 228:165–172CrossRefGoogle Scholar
  50. 50.
    Kanamori K, Kyotoh A, Fujimoto K, Nagata K, Suzuki H, Okamoto K (2001) Syntheses, structures, and properties of vanadium(III) complexes with the hexadentate ligand, tetramethylenediamine-N, N, N′, N′-tetraacetate, N, N′-bis(2-pyridylmethyl)-1,2-ethanediamine-N, N′-diacetate, and N, N′-bis(2-pyridylmethyl)-1,3-propanediamine-N, N′-diacetate. Bull Chem Soc Jpn 74:2113–2118CrossRefGoogle Scholar
  51. 51.
    Kanamori K, Ino K, Maeda H, Miyazaki K, Fukagawa M, Kumada J, Eguchi T, Okamoto K (1994) Relationship between oxo-bridged dimer formation and structure of vanadium(III) amino polycarboxylates. Inorg Chem 33:5547–5554CrossRefGoogle Scholar
  52. 52.
    Kanamori K, Yamamoto K, Okayasu T, Matsui N, Okamoto K, Mori W (1997) Structure and magnetic properties of dinuclear vanadium(III) complexes with alkoxo bridge. Bull Chem Soc Jpn 70:3031–3040CrossRefGoogle Scholar
  53. 53.
    Kanamori K, Okayasu T, Okamoto K (1995) Preparation and structure of dinuclear vanadium(III) complex triply bridged by three different groups. Chem Lett 24:105–106CrossRefGoogle Scholar
  54. 54.
    Berry RE, Armstrong EM, Beddoes RL, Collison D, Ertok SN, Helliwell M, Garner CD (1999) The structural characterization of amavadin. Angew Chem Int Ed 38:795–797CrossRefGoogle Scholar
  55. 55.
    Armstrong EM, Beddoes RL, Calviou LJ, Charnock JM, Collison D, Ertok N, Naismith JH, Garner CD (1993) The chemical nature of amavadin. J Am Chem Soc 115:807–808CrossRefGoogle Scholar
  56. 56.
    Carrond MAAFdeCT, Duarte MTLS, Costa Pessoa J, Silva JAL, Fraústo da Silva JJR, Candida M, Vaz TA, Vilas-Boas LF (1988) Bis(N-hydroxyiminodiacetate)vanadate(IV), a synthetic model of amavadin. J Chem Soc Chem Commun 17:1158–1159CrossRefGoogle Scholar
  57. 57.
    Won TJ, Barnes CL, Schlemper EO, Thompson RC (1995) Two crystal structures featuring the tetraperoxovanadate(V) anion and a brief reinvestigation of peroxovanadate equilibria in neutral and basic solution. Inorg Chem 34:4499–4503CrossRefGoogle Scholar
  58. 58.
    Piovesana O, Cappuccilli G (1972) Eight-coordination. I. Dodecahedral vanadium(IV) complexes with sulfur-chelating ligands. Inorg Chem 11:1543–1550CrossRefGoogle Scholar
  59. 59.
    Fanfani L, Nunzi A, Zanazzi PF, Zanzari AR (1972) The crystal structure of tetrakis(dithioacetato)vanadium(IV). Acta Cryst B28:1298–1302Google Scholar
  60. 60.
    Bonamico M, Dessy G, Fares V, Scaramuzza L (1974) Structural studies of eight-co-ordinate metal complexes. Part I. Crystal and molecular structures of tetrakis (phenylthioacetato)vanadium(IV) and tetrakis(dithiobenzoato)vanadium(IV). J Chem Soc Dalton Trans 1258–1263Google Scholar
  61. 61.
    Sendlinger SC, Nicholson JR, Lobkovsky EB, Hufman JC, Rehder D, Christou G (1993) Reactivity studies of mononuclear and dinuclear vanadium–sulfide–thiolate compounds. Inorg Chem 32:204–210CrossRefGoogle Scholar
  62. 62.
    Duraj SA, Andras MT, Kibala PA (1990) Metal–metal bonds involving vanadium atoms. A facile synthesis of a novel divanadium tetrakis(dithioacetate) that contains two µ-η2-S2 bridges from bis(benzene)vanadium(0) and dithioacetic acid. Inorg Chem 29:1232–1234CrossRefGoogle Scholar
  63. 63.
    Cotton FA, Wilkinson G, Bochmann M, Murillo C (1998) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  64. 64.
    Shaw MJ (2006) Vanadium electrochemistry. Encyclopedia of electrochemistry, vol 7a. Wiley, Weinheim, pp 357–381Google Scholar
  65. 65.
    Pampaloni G, Koelle U (1994) Chemical and electrochemical studies on metal carbonyl/cobaltocene Systems. J Organomet Chem 481:1–6CrossRefGoogle Scholar
  66. 66.
    Elschenbroich C, Kroker J, Nowotny M, Behrendt A, Metz B, Harms K (1999) η6-coordination of arsenine to titanium, vanadium, and chromium. Organometallics 18:1495–1503CrossRefGoogle Scholar
  67. 67.
    Dobson JC (1989) Coordination chemistry and redox properties of polypyridyl complexes of vanadium(II). Inorg Chem 28:1310–1315CrossRefGoogle Scholar
  68. 68.
    Ghosh P, Taube H, Hasegawa T, Kuroda R (1995) Vanadium(II) salts in pyridine and acetonitrile solvents. Inorg Chem 34:5761–5775CrossRefGoogle Scholar
  69. 69.
    Holloway JDL, Geiger WE Jr (1979) Electron-transfer reactions of metallocenes. Influence of metal oxidation state on structure and reactivity. J Am Chem Soc 101:2038–2044CrossRefGoogle Scholar
  70. 70.
    Ogino H, Nagata T, Ogino K (1989) Redox potentials and related thermodynamic parameters of (diaminopolycarboxylato)metal(III/II) redox couples. Inorg Chem 28:3656–3659CrossRefGoogle Scholar
  71. 71.
    Sokolowski A, Adam B, Weyhermüller T, Kikuchi A, Hildenbrand K, Schnepf R, Hildebrandt P, Bill E, Wieghardt K (1997) Metal- vs. ligand-centered oxidations in phenolato−vanadium and− cobalt complexes: characterization of phenoxyl−cobalt(III) species. Inorg Chem 36:3702–3710CrossRefGoogle Scholar
  72. 72.
    Hawkins CJ, Kabanos TA (1989) Synthesis and characterization of (catecholato)bis (β-diketonato)vanadium(IV) complexes. Inorg Chem 28:1084–1087CrossRefGoogle Scholar
  73. 73.
    Klich PR, Daniher AT, Challen PR, McConville DB, Youngs WJ (1996) Vanadium(IV) complexes with mixed O, S donor ligands. Syntheses, structures, and properties of the anions tris(2-mercapto-4-methylphenolato)vanadate(IV) and bis(2-mercaptophenolato)oxovanadate(IV). Inorg Chem 35:347–356CrossRefGoogle Scholar
  74. 74.
    Best SP, Ciniawsky SA, Humphrey DG (1996) Fourier-transform infrared study of short-lived highly reduced dithiolene complexes by potential-modulation spectroelectrochemical techniques. J Chem Soc Dalton Trans 2945–2949CrossRefGoogle Scholar
  75. 75.
    Nawi MA, Riechel TL (1981) Electrochemical studies of vanadium(III) and vanadium(IV) acetylacetonate complexes in dimethylsulfoxide. Inorg Chem 20:1974–1978CrossRefGoogle Scholar
  76. 76.
    Kabanos TA, Slawin AM, Williams DJ, Woollins JD (1990) The preparation and x-ray structure of V(N3S2)(dtbs)(phen)·CHCl3 (dtbc = di-t-butylcatecholate, phen = phenanthroline). J Chem Soc Chem Commun 193–194Google Scholar
  77. 77.
    Michibata H, Kanamori K (1998) Selective accumulation of vanadium by ascidians from seawater. Advances in environmental science and technology, vol 30 (Vanadium in the environment, part 1), Wiley, NewYork, pp 217–249Google Scholar
  78. 78.
    Kitamura M, Yamashita K, Imai H (1976) Studies on the electrode processes of oxovanadium(IV). II. Electrolytic reduction of vanadyl acetylacetonate in acetonitrile solution at mercury electrode. Bull Chem Soc Jpn 49:97–100CrossRefGoogle Scholar
  79. 79.
    Tsuchida E, Yamamoto K, Oyaizu K, Iwasaki N, Anson FC (1994) Electrochemical investigations of the complexes resulting from the acid-promoted deoxygenation and dimerization of (N, N′-ethylenebis(salicylideneaminato))oxovanadium(IV). Inorg Chem 33:1056–1063CrossRefGoogle Scholar
  80. 80.
    Tsuchida E, Oyaizu K, Dewi EL, Imai T, Anson FC (1999) Catalysis of the electroreduction of O2 to H2O by vanadium–salen complexes in acidified dichloromethane. Inorg Chem 38: 3704–3708CrossRefGoogle Scholar
  81. 81.
    Chatterjeea M, Ghosha S, Wub BM, Mak TCW (1998) A structural and electrochemical study of some oxovanadium(IV) heterochelate complexes. Polyhedron 17:1369–1374CrossRefGoogle Scholar
  82. 82.
    Tasiopoulos AJ, Troganis AN, Evangelou A, Raptopoulou CP, Terzis A, Deligiannakis Y, Kabanos TA (1999) Synthetic analogues for oxovanadium(IV)–glutathione interaction: an EPR, synthetic and structural study of oxovanadium(IV) compounds with sulfhydryl-containing pseudopeptides and dipeptides. Chem Eur J 5:910–920CrossRefGoogle Scholar
  83. 83.
    Tajika Y, Tsuge K, Sasaki Y (2005) Mononuclear oxovanadium complexes of tris(2-pyridylmethyl)amine. Dalton Trans 1438–1447Google Scholar
  84. 84.
    Asgedom G, Sreedhara A, Rao C, Kolehmainen E (1996) Monooxovanadium(V) mixed ligand complexes of Schiff bases and catecholates: synthesis, spectral and electrochemical characterization. Polyhedron 15:3731–3739CrossRefGoogle Scholar
  85. 85.
    Nakajima K, Kojima K, Kojima M, Fujita J (1990) Preparation and characterization of optically active Schiff base-oxovanadium(IV) and -oxovanadium(V) complexes and catalytic properties of these complexes on asymmetric oxidation of sulfides into sulfoxides with organic hydroperoxides. Bull Chem Soc Jpn 63:2620–2630CrossRefGoogle Scholar
  86. 86.
    Asgedom G, Sreedhara A, Rao C (1995) Oxovanadium(V) Schiff base complexes of trishydroxymethylaminomethane with salicylaldehyde and its derivatives: synthesis, characterization and redox reactivity. Polyhedron 14:1873–1879CrossRefGoogle Scholar
  87. 87.
    Ghosh S, Nanda KK, Addison AW, Butcher RJ (2002) Mononuclear and mixed-valence binuclear oxovanadium complexes with benzimidazole-derived chelating agents. Inorg Chem 41: 2243–2249CrossRefGoogle Scholar
  88. 88.
    Maurya MR, Kumar A, Abid M, Azam A (2006) Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorg Chim Acta 359:2439–2447CrossRefGoogle Scholar
  89. 89.
    Hirao T (1997) Vanadium in modern organic synthesis. Chem Rev 97:2707–2722CrossRefGoogle Scholar
  90. 90.
    Bolm C, Bienewald F (1996) Asymmetric sulfide oxidation with vanadium catalysts and H2O2. Angew Chem Int Ed Engl 34:2640–2642CrossRefGoogle Scholar
  91. 91.
    Takizawa S, Katayama T, Sasai H (2008) Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chem Commun 35:4113–4122CrossRefGoogle Scholar
  92. 92.
    Conte V, Floris B (2010) Vanadium catalyzed oxidation with hydrogen peroxide. Inorg Chim Acta 363:1935–1946CrossRefGoogle Scholar
  93. 93.
    Pecoraro VL, Slebondnic C, Hamstra B (1998) Synthetic models for vanadium haloperoxidases. ACS symposium series, 711(Vanadium Compounds):157–167Google Scholar
  94. 94.
    Waidmann CR, DiPasquale AG, Mayer JM (2010) Synthesis and reactivity of oxo-peroxo-vanadium(V) bipyridine compounds. Inorg Chem 49:2383–2391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of Science and TechnologyUniversity of ToyamaToyamaJapan

Personalised recommendations