Skip to main content

Semiconductor Lasers for Sensor Applications

  • Conference paper
  • First Online:
Nanotechnological Basis for Advanced Sensors

Abstract

Starting with a short historical synopsis this paper gives a brief introduction into semiconductor lasers. The working principles and the necessary fabrication technology are examined. Semiconductor laser systems offer unique characteristics, rendering them superior to other types of lasers. By combining different compound semiconductors a huge range of wavelengths spanning from ultra-violet (UV) to the far-infrared (FIR) can be covered. Hence, by applying sophisticated bandgap and photonic engineering, tailored far-infrared lasers are able to address a vast amount of applications. The existing semiconductor laser technology is suitable to meet the requirements of highly sensitive optical sensing for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E.F. Schubert, Light Emitting Diodes, Cambridge University Press (2006).

    Google Scholar 

  2. F. Bachmann, High Power Diode Lasers, Springer (2007).

    Google Scholar 

  3. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Phys. Rev. Lett. 9, 366 (1962).

    Article  ADS  Google Scholar 

  4. H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).

    Article  ADS  Google Scholar 

  5. Z.I. Alferov, Rev. Mod. Phys. 73, 767 (2001).

    Article  ADS  Google Scholar 

  6. L.A. Coldren, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons (1995).

    Google Scholar 

  7. H. Kroemer, IEEE LEOS 21, 4 (2007).

    Google Scholar 

  8. R. Dingle, W. Wiegmann, C.H. Henry, Phys. Rev. Lett. 33, 827 (1974).

    Article  ADS  Google Scholar 

  9. N. Holonyak, R. Kolbas, R. Dupuis, P. Dapkus, IEEE J. Quantum Electron. 16, 170 (1980).

    Article  ADS  Google Scholar 

  10. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop'ev, Zh I. Alferov, U. Richter, P. Werner, U. Gösele, J. Heydenreich, Electron. Lett. 30, 1416 (1994).

    Article  Google Scholar 

  11. A.Y. Cho, J. Vac. Sci. Technol. 8, 31 (1971).

    Article  ADS  Google Scholar 

  12. H.M. Manasevit, Appl. Phys. Lett. 12, 156 (1968).

    Article  ADS  Google Scholar 

  13. K. Jackson, Materials Science and Technology Vol. 16, Processing of Semiconductors, VCH (1996).

    Google Scholar 

  14. L.A. Coldren, G.A. Fish, Y. Akulova, J.S. Barton, L. Johansson, C.W. Coldren, J. Lightwave Technol. 22, 193 (2004).

    Article  ADS  Google Scholar 

  15. P. Bardella, I. Montrosset, Politecnico di Torino, Italy, with kind permission (2010).

    Google Scholar 

  16. J. Viheriälä, M.-R. Viljanen, J. Kontio, T. Leinonen, J. Tommila, M. Dumitrescu, T. Niemi, M. Pessa, Advanced Lithography Conference, SPIE Proc. 7271 (2009).

    Google Scholar 

  17. M. Asada, IEEE J. Quantum Electron. 22, 1915 (1986).

    Article  ADS  Google Scholar 

  18. I.N. Stranski, L. von Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz 146, 797 (1939).

    Google Scholar 

  19. H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Electron. Lett. 30, 142 (1994).

    Article  Google Scholar 

  20. D. Bimberg, J. Phys. D: Appl. Phys. 38, 2055 (2005).

    Article  ADS  Google Scholar 

  21. J.P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T.W. Berg, M. van der Poel, J. Mørk and B. Tromborg, J. Phys. D: Appl. Phys. 38, 2088 (2005).

    Article  ADS  Google Scholar 

  22. F.K. Tittel, D.G. Lancaster, and D. Richter, Laser Phys. 10, 348 (2000).

    Google Scholar 

  23. “Nanotechnology Mid IR Sensor Market”, Winter Research (2009).

    Google Scholar 

  24. P. Werle, Spectrochim. Acta. A. 54, 197–236 (1998).

    Article  ADS  Google Scholar 

  25. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998).

    Article  ADS  Google Scholar 

  26. J. Sonksen, Sensor Process and Device for Determining a Physical Value, PhD thesis, Universität Kassel (2010) and Patent No. DE10 2004 037 519 B4.

    Google Scholar 

  27. J.P. Reithmaier, G. Eisenstein, A. Forchel, Proc. IEEE 95, 1779 (2007).

    Article  Google Scholar 

  28. L. Bach, I.P. Reithmaier, A. Forchel, J.L. Gentner, and L. Goldstein, Appl. Phys. Lett. 79, 2324 (2001).

    Article  ADS  Google Scholar 

  29. J. Kunsch, L. Mechold, A. Paraskevopoulos, G. Strasser, Ch. Mann, Q. Yang, Spektroskopische Laserdioden und deren Zubehör im Bereich 1.2 – 150 μm: Ausgewählte neuere Entwicklungen, Tech. Report, Laser Components GmbH (2006).

    Google Scholar 

  30. J. Seufert, J. Koeth, M. Fischer, S. Höfling, J.P. Reithmaier, A. Forchel, Technisches Messen 72, 374 (2005).

    Article  Google Scholar 

  31. A.A. Kosterev, F.K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).

    Article  ADS  Google Scholar 

  32. M.A. Belkin, Q.J. Wang, C. Pflügl, A. Belyanin, S.P. Khanna, A.G. Davies, E.H. Linfield, F. Capasso, IEEE J. Sel. Top. Quantum Electron. 15, 952 (2008).

    Google Scholar 

  33. I. Waldmueller, W.W. Chow, M.C. Wanke, IEEE J. Sel. Top. Quantum Electron. 13, 1084 (2007).

    Article  Google Scholar 

  34. FP7 Project “DeLight”, http://www.delightproject.eu.

  35. FP7 Marie Curie Initial Training Network “Mitepho”, http://www.uc3m.es/portal/page/portal/grupos_investigacion/optoelectronics/european_projects/mitepho.

  36. M. Wiegner, Meteorological Institute, Ludwig-Maximilians-Universität München, Germany (with kind permission 2010).

    Google Scholar 

  37. FP7 Project “Gospel”, http://www.gospel-project.eu/.

Download references

Acknowledgements

The authors like to thank S. Afzal (INA, University of Kassel), P. Bardella and I. Montrosset (Politecnico di Torino) for their kind permission to use the graphs in Fig. 36.6, J. Kunsch (Laser Components GmbH) for the graph in Fig. 36.16 and M. Wiegner (Meteorological Institute, Ludwig-Maximilians-Universität München) for the LIDAR plot in Fig. 36.19. The financial support of the EU projects, “DeLight”, “Gospel” [37] as well as the project “Mitepho” of the Marie Curie training network is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gilfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gilfert, C., Reithmaier, J.P.P. (2011). Semiconductor Lasers for Sensor Applications. In: Reithmaier, J., Paunovic, P., Kulisch, W., Popov, C., Petkov, P. (eds) Nanotechnological Basis for Advanced Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0903-4_36

Download citation

Publish with us

Policies and ethics