Skip to main content

Temperature Ferroelastic Phase Transition in Hydroxyapatite. Hydroxyl Solubility, Configuration Heat-Capacity, Hysteresis Effect, Elasticity Modulus

  • Conference paper
  • First Online:
Carbon Nanomaterials in Clean Energy Hydrogen Systems - II

Abstract

The statistical theory of ferroelastic-paraelastic phase transition has been elaborated in this paper. The equation of thermodynamic equilibrium state has been examined and the temperature of transition between phases has been estimated. The calculation of temperature dependence of hydroxyl solubility in crystal has been carried out. The manifestation hysteresis effect has been considered. The temperature dependence of elastic compliance and elasticity modulus has been evaluated and the verity of the rule of “negative two” and Curie-Weiss law has been found. The dependence configuration heat capacity on temperature has been calculated, its extremality has been ascertained and the abrupt change of heat capacity has been defined in the point of phase transition. The established regularities are consistent qualitatively with literature experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehmel M (1984) Uber die struktur des apatits. Zeit Krist 75:323–331

    Google Scholar 

  2. Náray-Szabó S (1930) The structure of apatite. Zeit Krist 75:387–398

    Google Scholar 

  3. Beevers CA, Mc. Intyre DB (1946) The atomic structure of fluor-apatite and its relation to that of tooth and bone material. Mineralog Mag 27:254–257

    Article  CAS  Google Scholar 

  4. Ormont BF (1950) Structures of inorganic substances. Gostekhizdat, Moscow, 968 p (in Russian)

    Google Scholar 

  5. Silverman SR, Fuyat RK, Weiser JD (1952) Quantitative determination of calcite associated with carbonate-bearing apatite. Am Mineralogist 37:211–222

    CAS  Google Scholar 

  6. Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Cryst 11:308–309

    Article  CAS  Google Scholar 

  7. Hayashi S (1960) Analysis of the crystal structure of fluorapatite by nuclear magnetic resonance. J Chem Soc Japan 81:540–542

    CAS  Google Scholar 

  8. Kay MJ, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204(12):1050–1052

    Article  CAS  Google Scholar 

  9. Aizu K (1969) Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Japan 27(2):387–396

    Article  CAS  Google Scholar 

  10. Aizu K (1970) Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys Rev B2(3):754–772

    Google Scholar 

  11. Morgan H, Wilson RM, Elliott JC, Dowker SEP, Anderson P (2000) Preparation and characterization of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 21:617–627

    Article  CAS  Google Scholar 

  12. Rakovan JF, Hughes JM (2000) Strontium in the apatite structure: strontian fluoride and belovite - (Ce). Can Miner 38:839–845

    Article  CAS  Google Scholar 

  13. Sampath Kumar TS, Manjubala I, Gunasekaran J (2000) Synthesis of carbonated calcium phosphate ceramics using microwave irradiation. Biomaterials 21:1623–1629

    Article  Google Scholar 

  14. Mathew M, Takagi S (2001) Structures of biological minerals in dental research. J Res Natl Inst Stan technol 106(6):1035–1044

    CAS  Google Scholar 

  15. Torrent-Burgues J, Rodriguez-Clemente R (2001) Hydroxyapatite precipitation in a semibatch process. Cryst Res Technol 36:1075–1082

    Article  CAS  Google Scholar 

  16. Gomez-Morales I, Torrent-Burgues J, Boix T, Fraile B, Rodriguez-Clemente R (2001) Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst Res Technol 36(1):15–26

    Article  CAS  Google Scholar 

  17. Leroy N, Bres E (2001) Structure and substitutions in fluorapatite. Eur Cell Mater 2:36–48

    CAS  Google Scholar 

  18. Koutsopoulos S (2001) Kinetic study on the crystal growth of hydroxyapatite. Langmuir 17:8092–8097

    Article  CAS  Google Scholar 

  19. Hadrich A, Lautie A, Mhiri T (2001) Vibrational study and fluorescence bands in the FT-Raman spectra of Ca10-xPbx(PO4)6(OH)2 compound. Spectrochim Acta A 57:1673–1681

    Article  CAS  Google Scholar 

  20. Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I Synthesis, characterization and thermal stability of powders. Biomaterials 23:1065–1072

    Article  CAS  Google Scholar 

  21. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612

    Article  CAS  Google Scholar 

  22. Shpak AP, Karbovskii VL, Trachevskii VV (2002) Apatites. Akademperiodika, Kiev, 414 p (in Russian)

    Google Scholar 

  23. Elliott JC (2002) Calcium Phosphate Biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, vol 48, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 427–454

    Google Scholar 

  24. Chaumont J, Soulet S, Krupa JC, Carpena J (2002) Competition between disorder creation and annealing in fluorapatite nuclear waste forms. J Nucl Mater 301:122–128

    Article  CAS  Google Scholar 

  25. Gross KA, Berndt CC (2002) Biomedical Application of Apatites. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, vol 48, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 631–672

    Google Scholar 

  26. Pan Y, Fleet ME (2002) Compositions of the Apatite-Group Minerals: Substituting Mechanisms and Controlling Factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, vol 48, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 13–50

    Google Scholar 

  27. Hughes JM, Rakovan J (2002) The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, vol 48, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 1–12

    Google Scholar 

  28. Murugan R, Sampath Kumar TS, Panduranga Rao K (2002) Fluorinated bovine hydroxyapatite: preparation and characterization. Mater Lett 57:429–433

    Article  CAS  Google Scholar 

  29. John M, Rakovan H, Rakovan J (2002) The crystal structure of apatite Ca5(PO4)3(F, OH, Cl). Rev Mineralog Geochem 48(1):1–12

    Article  Google Scholar 

  30. Shpak AP, Karbovsky VL, Vakhney AG, Kluyenko LP (2002) Spectral and quantum-mechanical study of electronic structure of ultradispersed calcium hydroxyapatite. Chem Phys Technol Surface 7–8:57

    Google Scholar 

  31. Calderin L, Stott MJ (2003) Electronic and crystallographic structure of apatites. Phys Rev B.67:134106

    Google Scholar 

  32. Shpak AP, Karbovskii VL, Tracheskii VV, Didenko RV, Kurgan NA (2003) Diagnostics of apatitelike structures based on alkali-earth metals. Metallophys Mod Technol 25(10):1279–1301

    CAS  Google Scholar 

  33. Pinchuk ND, Ivanchenko LA (2003) Technological processes of production of calcium phosphate biomaterials. Poroshk Metall 7–8:36–52 (in Russian)

    Google Scholar 

  34. White TJ, Zhili D (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B59:1–16

    CAS  Google Scholar 

  35. Calderin L, Stott MJ (2003) Electronic and crystallographic structure of apatites. Phys Rev B B67(34106):1–7

    Google Scholar 

  36. Hidouri M, Bouzouita K, Kooli F, Khattech I (2003) Thermal behaviour of magnesium-containing fluorapatite. Mater Chem Phys 80:496–505

    Article  CAS  Google Scholar 

  37. Monteiro MM, Rocha NCC, Rossi AM, Soares GA (2003) Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid. J Biomed Mater Res A65:299–305

    Article  CAS  Google Scholar 

  38. Mavropoulos E, Rossi AM, da Rocha NCC, Soares GA, Moreira JC, Moure GT (2003) Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions. Mater Charact 50:203–207

    Article  CAS  Google Scholar 

  39. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24:1389–1398

    Article  Google Scholar 

  40. Pena J, Vallet Regi M (2003) Hydroxyapatite, tricalcium phosphate and biphasic material prepared by a liquid mix technique. J Eur Ceram Soc 23:1687–1696

    Article  CAS  Google Scholar 

  41. Kasten P, Luginbuhl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M, Bosch U (2003) Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials 24:2593–2604

    Article  CAS  Google Scholar 

  42. Shi J (2004) From dental enamel tu synthetic hydroxyapatite-bazed biomaterials. Ph. D. thesis, University of Hamburg

    Google Scholar 

  43. Tadic D, Epple MA (2004) Thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25:987–994

    Article  CAS  Google Scholar 

  44. Pasteris JD, Wopenka B, Freeman JJ et al (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implication for bone and biomaterials. Biomaterials 25:229–238

    Article  CAS  Google Scholar 

  45. Markovic M, Fowler BO, Tung MS (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite. Reference material. J Res Natl Inst Stand Technol 109(6):553–568

    CAS  Google Scholar 

  46. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25:2111–2121

    Article  CAS  Google Scholar 

  47. Siddharthan A, Seshadri SK (2004) Sampath Kumar T.S. Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J Mater Sci Mater Med 15:1279–1284

    Article  CAS  Google Scholar 

  48. Wang T, Dorner-Reisel A, Müller E (2004) Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc 24:693–698

    Article  CAS  Google Scholar 

  49. Karbovskii VL (2005) Electronic and atomic structure of apatites and apatitelike structures. Ph.D. thesis, Kiev. Instiutute of Metal Physics of NAS of Ukraine, 313 p (in Russian)

    Google Scholar 

  50. Brik AB, Shpak AP, Karbovskii VL et al (2005) ESR of nanoscale particles in biological and synthetic carbonate containing apatite. Mineral J 27(1):5–26 (in Russian)

    CAS  Google Scholar 

  51. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C25:131–143

    CAS  Google Scholar 

  52. Danilchenko SN, Kulik AN, Bugay OM et al (2005) Determination of content and localization of magnesium in bioapatite of bone. J Appl Spectr 72(6):821–826 (in Russian)

    Google Scholar 

  53. Miro S, Grebille D, Chateigner D, Pelloquin D, Stroquert JP, Grob JJ, Costantini JM, Studer F (2005) X-ray diffraction study of damage inducted by swift heavy ion irradiation in fluorapatite. Nucl Instrum Methods Phys Res B227:306–318

    Google Scholar 

  54. Hochrein O, Kniep R, Zahn D (2005) Atomistic simulation study of the order/disorder (monoclinic to hexagonal) phase transition of hydroxyapatite. Chem Mater 17(8):1978–1981

    Article  CAS  Google Scholar 

  55. White T, Ferraris C, Kim J, Madhavi S (2005) Apatite – an adaptive framework structure. Rev Miner Geochem 57(1):307–401

    Article  CAS  Google Scholar 

  56. Cruz FJAL, Lopes JNC, Calado JCG, Piedade MEM (2005) A molecular dynamics of the thermodynamic properties of calcium apatites. 1. Hexagonal phases. J Phys Chem B 109(51):24473–24479

    Article  CAS  Google Scholar 

  57. Cruz FJAL, Lopes JNC, Calado JCG (2006) Molecular dynamics of the thermodynamic Properties of Calcium Apatites. 2. Monoclinic Phases. J Phys Chem 110(9):4387–4392

    CAS  Google Scholar 

  58. Leventouri Th (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342

    Article  CAS  Google Scholar 

  59. Danilchenko SN, Kulik AN, Pavlenko PA, Kalinichenko TG et al (2006) Thermally activated diffusion of magnesium from bioapatite crystals. J Appl Spectr 73(3):437–443

    Article  CAS  Google Scholar 

  60. Glimcher MJ (2006) Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem Mineralog S Am 64:223–282

    Article  CAS  Google Scholar 

  61. Shin WJ, Wang JW, Wang MC, Hon MH (2006) A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature x-ray diffraction. Mater Sci Eng C 26:1434–1438

    Google Scholar 

  62. Danilchenko SN (2007) Structure and properties of calcium apatites from viewpoint of biomineralogy and biomaterials science. Visnyk SimGU Ser Phys Math Mech 2:33–59 (in Russian)

    Google Scholar 

  63. Dorozhkin SV (2007) Calcium orthophosphates. J Mater Sci 42:1061–1095

    Article  CAS  Google Scholar 

  64. Suvorova EI, Petrenko PP, Buffat PA (2007) Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning 29:162–170

    Article  CAS  Google Scholar 

  65. Dorozhkin SVA (2007) hierarchical structure for apatite crystals. J Mater Sci Mater Med 18:363–366

    Article  CAS  Google Scholar 

  66. Brik AB, Danilchenko SN, Radchuk VV et al (2007) Thermoactivated changes of properties of biogenic and synthetic carbonatecontaining apatites by data of X-ray diffraction and ESR. Miner J 29(2):32–47 (in Russian)

    CAS  Google Scholar 

  67. Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KMC, Luk KDK, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460

    Article  CAS  Google Scholar 

  68. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G (2007) Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater 3:961–969

    Article  CAS  Google Scholar 

  69. Dagang G, Kewei X, Yong H (2008) The influence of Sr doses on the in vitro biocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement. J Biomed Mater Res A 86:947–958

    Google Scholar 

  70. Siva Rama Krishna D, Siddharthan A, Seshadri SK, Sampath Kumar TS (2007) A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci Mater Med 18:1735–1743

    Article  CAS  Google Scholar 

  71. Lee SJ, Yoon YS, Lee MH, Oh NS (2007) Nanosized hydroxyapatite powder synthesized from eggshell and phosphoric acid. J Nanosci Nanotechnol 7:4061–4064

    Article  CAS  Google Scholar 

  72. Zhang S (2008) CO2 Laser induced structural changes of dental enamel. Dissertation on Doctor Degree of Natural Sciences, University of Hamburg, 115 p

    Google Scholar 

  73. Chinthaka Silva GW, Ma L, Hemmers O, Lindle D (2008) Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques. Micron 39:269–274

    Article  CAS  Google Scholar 

  74. Siddharthan A, Sampath Kumar TS, Seshadri SK (2009) Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P rations. Biomed Mater 4:1–9

    Article  CAS  Google Scholar 

  75. Ma G, Liu XY (2009) Hydroxyapatite: hexagonal or monoclinic? Cryst Growth Des 9(7):2991–2994

    Article  CAS  Google Scholar 

  76. Magdich LN, Molchanov VYa (1978) Acoustooptical devices and their applications. Sov. Radio, Moscow, 306 p (in Russian)

    Google Scholar 

  77. Yu Gulyaev V (1980) Acoustoelectronic apparatus for communication systems and information handling. In: Kotelnikov VA (ed) Problems of modern radio engineering and electronics. Nauka, Moscow, pp 297–319 (in Russian)

    Google Scholar 

  78. Balakshii VI, Parygin VN, Chirkov LE (1985) Physical principles of acousto-optics. Radio i Svyaz, Moscow, 323 p (in Russian)

    Google Scholar 

  79. Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13(1):94–117

    Article  CAS  Google Scholar 

  80. Song QM, Wang CY, Wen SL (1998) Electron structure of a grain boundary and a crystal of calcium phosphate bioceramic (hydroxyapatite). Philos Mag A Phys Condens Matter Struct Defect Mech Prop 77(5):1309–1321

    CAS  Google Scholar 

  81. Kanazawa T (ed) (1989) Inorganic phosphate materials. Elsevier Science, Amsterdam

    Google Scholar 

  82. Zyman Z, Ivanov I, Glushko V et al (1999) Preparation and properties of inhomogeneous hydroxyapatite ceramics. J Biomed Mater Res 46:135–140

    Article  CAS  Google Scholar 

  83. Dudnik EF, Duda VM, Dyachenko L (1998) Crystal chemistry features of hyfrogen introduction in oxide crystals with apatite-like structure. Visnyk DGU Fizika 1(3):141–149 (in Russian)

    Google Scholar 

  84. Dudnik EF, Duda VM (1999) Protonic conductivity and ferroelasticity in materials with apatite-like structure. Ferroelectrics 233(1–2):121–127

    Article  CAS  Google Scholar 

  85. Royce BS (1973) The defect structure and ionic transport properties of calcium apatite. J Phys 34:11–12, C9-327-332

    Google Scholar 

  86. Orlovskii VP, Zakharov NA, Ivanov AA (1996) Structural transition and dielectric characteristics of high-purity hydroxyapatite. Inorg Mater 32(6):654–656

    CAS  Google Scholar 

  87. Orlovskii VP, Zakharov NA, Ivanov AA (1996) Structural transition and dielectric characteristics of high-purity hydroxyapatite of calcium. Inorg Materials 32(6):736–739 (in Russian)

    Google Scholar 

  88. Azimov SY, Ismatov AA, Fedorov NF (1990) Apatites and their rare-earth analogues. Fan, Tashkent,150 p (in Russian)

    Google Scholar 

  89. Sharpataya GA, Fedoseev AD, Bogacheva VV, Orlovskii VP (1995) The heat capacity of Ca10(PO4)6(OH)2 from 300 to 1070 K. Russ J Inorg Chem 40(4):590–593

    Google Scholar 

  90. Ishikawa T, Tanaka H, Yasukawa A, Kandori K (1995) Modification of calcium hydroxyapatite using ethyl phosphates. J Mater Chem 5(11):1963–1967

    Article  CAS  Google Scholar 

  91. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry 18. Elsevier, Amsterdam, 389 p

    Google Scholar 

  92. Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73(11):1703–1710

    CAS  Google Scholar 

  93. Wen SL (1989) Human enamel structure studied by high resolution electron microscopy. Electron Microsc Rev 2(1):1–16

    Article  CAS  Google Scholar 

  94. Mortier A, Lemaitre J, Rouxhet PG (1989) Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim Acta 143:265–282

    Article  CAS  Google Scholar 

  95. Deaza PN, Guitian F, Santos C (1997) Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-tricalcium phosphate. Chem Mater 9:916–922

    Article  CAS  Google Scholar 

  96. Smirnov AA (1966) Molecular-kinetic theory of metals. Nauka, Moscow, 488 p (in Russian)

    Google Scholar 

  97. Matysina ZA (1978) Molecular-kinetic theory of ordered solid solutions. DGU, Dnepropetrovsk, p 119 (in Russian)

    Google Scholar 

  98. Matysina ZA, Zaginaichenko SYu, Schur DV (2005) Orders of different type in crystals and phase transformations in carbon materials. Nauka i obrazovanie, Dnepropetrovsk, 524 (in Russian)

    Google Scholar 

  99. Matysina ZA, Zaginaichenko SYu, Schur DV (2006) Solubility of impuritites in metals, alloys, intermetallic compounds, fullerites. Nauka i obrazovanie, Dnepropetrovsk, 514 p (in Russian)

    Google Scholar 

  100. Matysina ZA, Chumak VA (2000) Statistic theory of deformational ordering in crystals of sheelite structure. Dep. N 1766-B00. (M. VINITI. 2000. 24 p.). Izv Vuzov Fizika 9:112 (in Russian)

    Google Scholar 

  101. Matysina ZA, Chumak VA (2001) Deformation hystresis and elastic compliance of crystals with structure H4 near Curie point Ukr. Fiz Zhurn 46(9):957–959 (in Russian)

    Google Scholar 

  102. Matysina ZA, Zaginaichenko SYu, Eremenko AM (2002) Phase transformations in elastic crystals of the structure G51. Proc. of Int. conf. “Science for Materials in the Frontier of Centuries: Advantages and Challenges”. Kiev. IPM of NASU, November 4-8, 2002, P. 208–209

    Google Scholar 

  103. Matysina ZA, Eremneko AM (2005) Investigation of phase transformation in ferroelastics of structure G51. Deformation hysteresis, configuration heat capacity. Dep.N 100-B2004. (M.: VINITI. 23 p.). Izv Vuzov Fizika 1:94 (in Russian)

    Google Scholar 

  104. Parker SP (Editor in Chief) (1983) McGraw-Hill encyclopedia of physics. Mc-Graw-Hill Book Company, New-York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Zaginaichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Matysina, Z.A., Zaginaichenko, S.Y., Schur, D.V., Shvachko, N.A. (2011). Temperature Ferroelastic Phase Transition in Hydroxyapatite. Hydroxyl Solubility, Configuration Heat-Capacity, Hysteresis Effect, Elasticity Modulus. In: Zaginaichenko, S., Schur, D., Skorokhod, V., Veziroglu, A., İbrahimoğlu, B. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems - II. NATO Science for Peace and Security Series C: Environmental Security, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0899-0_27

Download citation

Publish with us

Policies and ethics