Skip to main content

Carbon Nanotubes Filled Composite Materials

  • Conference paper
  • First Online:
Carbon Nanomaterials in Clean Energy Hydrogen Systems - II

Abstract

It was shown that insertion of carbon nanotubes (CNT) in different matrixes, such as polymers, hydroxyapatite (HAP), elastomers and liquid Selenium, leads to significant changes of their parameters. The influence of filler appears on strength characteristics of obtained composite materials. Such changes were due to CNT net-working in initial matrix. Also it was shown that not only volume characteristics of filled composites but surface properties are changing and this explains the better biocompatibility of nanocomposites, which is observed in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sementsov YuI, Melezhek OV, Prikhod’ko GP et al (2007) Synthesis, structure, physico-chemical properties of nanocarbon materials. In: Shpak AP, Gorbyk PP (eds) Physical chemistry on nanomaterials and supramolecular structures, vol 2. Naukova dumka, Kyiv

    Google Scholar 

  2. Melezhyk AV, Sementsov YuI, Yanchenko VV (2005) Synthesis of thin carbon nanotubes on co-precipitated metaloxide catalysts. Russ J Appl Chem 78(6):938–946

    Google Scholar 

  3. Yanchenko VV, Sementsov YuI, Melezhyk AV (2004) Method of obtaining of catalysts for CVD of carbon nanotubes. Ukrainian Patent Application 20041008154, Int. Cl.7 C01B11/00, D01F9/12, 8 Oct 2004

    Google Scholar 

  4. Rakov EG (2007) Fibers with carbon nanotubes. Market Light Ind 48:51–57

    Google Scholar 

  5. Sokolov YA, Shubanov SM, Kandyrin LB, Kalugin EV (2009) Polymer nanocomposites. Struct Properties Plast 3:18–23

    Google Scholar 

  6. Malysheva TL (2005) Wonders of technology and the era of « smart » textiles. Market 471(21):194–201

    Google Scholar 

  7. Zhang H, Harwood W, Ross G (2006) Antistatic polymer monofilament, method for making an antistatic polymer monofilament for production of spiral fabrics and spiral fabrics formed with such monofilaments. US Patent N7094467, DCA D 01 F 6/00, 2006

    Google Scholar 

  8. Tsebrenko MV (1991) Ultrathin synthetic fibers. Chemistry, Moscow 214 (in Russian)

    Google Scholar 

  9. Tsebrenko MV, Rozanov NM, Kuvaev EP, Sapyanenko AA, Dzyubenko LS, Gorbik PP (2007) Patterns for polypropylene microfibers containing filler in nano state. Chem Fibers 5:16–21

    Google Scholar 

  10. Utracki LA, Bakerdjiane Z, Kamal MR (1975) A method for the measurement of the true die swell of polymer melts. J Appl Polym Sci 19(2):481–501

    Article  CAS  Google Scholar 

  11. Khan ChD (1979) Rheology in processing of polymers. Chemistry, Moscow 367 (in Russian)

    Google Scholar 

  12. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  CAS  Google Scholar 

  13. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60

    Article  CAS  Google Scholar 

  14. Lazarenko ON, Aleksyeyeva TA (2009) Method of individual testing implant on biocompatibility of recipient organism. Patent of Ukraine 87387, 10 July 2009

    Google Scholar 

  15. Tirrell M, Kokkoli E (2002) Biesalski M the role of surface science in bioengineered materials. Surf Sci 500:61–83

    Article  CAS  Google Scholar 

  16. Aleksyeyeva TA, Sementsov YuI, Gun’ko GS et al (2009) Deaglomerawbz mnogostennyh CNT v etylovom spirte i yego vodnyh rastvorah/tesisy dokladov Vseukrainskoy konferencii c mezhdunarodnym uchastiyem. Prikladnay phisicheskayay himiaya I nanohimiya 10–14 Oct 2009, Sudak, Crimea, pp 162–163

    Google Scholar 

  17. Masa-aki T, Takamasa O, Mamoru O, Akira O, Toshiyuki H (2006) Mechanical properties of carbon nanotubes/hydroxyapatite composites prepared by Spark plasma sintering. AIP Conf Proc 832:430–432

    Article  Google Scholar 

  18. White A, Best S, Kinloch I (2005) Hydroxyapatite–carbon nanotube composites for biomedical applications. Rev Appl Ceram Technol 4(1):1–13

    Article  CAS  Google Scholar 

  19. Kealley C, Elcombe M, van Riessen A (2008) Microstrain in hydroxyapatite carbon nanotube composites. J Synchrotron Rad 15:86–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kartel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sementsov, Y., Prikhod’ko, G., Kartel, M., Tsebrenko, M., Aleksyeyeva, T., Ulyanchychi, N. (2011). Carbon Nanotubes Filled Composite Materials. In: Zaginaichenko, S., Schur, D., Skorokhod, V., Veziroglu, A., İbrahimoğlu, B. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems - II. NATO Science for Peace and Security Series C: Environmental Security, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0899-0_16

Download citation

Publish with us

Policies and ethics