Toxicity Study of Nanofibers

Conference paper


The major contribution of nanotechnology to our life is the controlled synthesis of a large variety of nanofilaments (nanowires and nanotubes) which could be the basis of future devices. Although the expectations are large concerning the improvement of our everyday life due to nanostructures (sensors, vectors for therapies, photovoltaic devices, fast integrated circuits etc.), there is a growing fear related to their possible health hazards, strongly reminiscent to those of asbestos. We have studied 3 model nanofilaments: TiO2 nanowires, carbon and boron nitride (BN) nanotubes using MTT assays. We tried to unravel the role of local catalytic activity, the importance of structural defects, functional groups and the tortuosity of these nanofilaments in their alteration of cell proliferation.


Health hazard Nanofilaments Carbon nanotubes TiO2 Boron nitride nanotubes Cell death Local catalysis Tortuosity 



This work was the subject of one of my presentations (L.F) at the Biophysics Summer School in Rovinj, the last one which Greta Pifat-Mrzljak could organize. During 30 years with lot of devotion and professionalism she brought together excellent speakers and hundreds of young students. Under the Mediterranean sky she cultivated a very creative atmosphere. Her memory occupies a permanent place in our hearts.

This work is supported by the Swiss National Science Foundation. The supply of BN nanotubes by Dmitri Goldberg is gratefully acknowledged.


  1. Barrett, J.C., Lamb, P.W. and Wiseman, R.W. (1989) Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ. Health Perspect. 81: 81–89.PubMedCrossRefGoogle Scholar
  2. Bianco, A., Kostarelos, K. and Prato, M. (2005) Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9: 674–679.PubMedCrossRefGoogle Scholar
  3. Card, J.W., Zeldin, D.C., Bonner, J.C. and Nestmann, E.R. (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell Mol. Physiol. 295: L400–L411.PubMedCrossRefGoogle Scholar
  4. Carey, J.D. (2003) Engineering the next generation of large-area displays: prospects and pitfalls. Philos. Trans. A Math. Phys. Eng. Sci. 361: 2891–2907.CrossRefGoogle Scholar
  5. Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z. et al. (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131(3): 890–891PubMedCrossRefGoogle Scholar
  6. Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K. and Beguin, F. (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44: 1106–1111.CrossRefGoogle Scholar
  7. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A. (1995) Boron-nitride nanotubes. Science 269: 966–967.PubMedCrossRefGoogle Scholar
  8. Ciofani, G., Raffa, V., Menciassi, A. and Cuschieri, A. (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101: 850–858.PubMedCrossRefGoogle Scholar
  9. Dransfield, G.P. (2000) Inorganic sunscreens. Radiat. Prot. Dosimetry 91: 271–273.Google Scholar
  10. Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W. and van Ravenzwaay, B. (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82: 151–157.PubMedCrossRefGoogle Scholar
  11. Golberg, D., Bando, Y., Kurashima, K. and Sato, T. (2001) Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44: 1561–1565.CrossRefGoogle Scholar
  12. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. and Zhi, C. (2010) Boron nitride nanotubes and nanosheets. Acs Nano 4: 2979–2993.PubMedCrossRefGoogle Scholar
  13. Gueneau-Rancurel, L. (2007) Chemistry for architecture: the self-cleaning glass. Actual Chim. 311: 6–10.Google Scholar
  14. Hafner, J.H., Cheung, C.L., Woolley, A.T. and Lieber, C.M. (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77: 73–110.PubMedCrossRefGoogle Scholar
  15. Hoet, P.H., Bruske-Hohlfeld, I. and Salata, O.V. (2004) Nanoparticles – known and unknown health risks. J. Nanobiotechnol. 2: 12.CrossRefGoogle Scholar
  16. Horváth, L., Magrez, A., Forró, L. and Schwaller, B. (2010) Cell type dependence of carbon based nanomaterial toxicity. Physica Status Solidi (B). 247: 3059–3062.Google Scholar
  17. Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58.CrossRefGoogle Scholar
  18. Jain, A.K., Mehra, N.K., Lodhi, N., Dubey, V., Mishra, D.K., Jain, P.K. and Jain, N.K. (2007) Carbon nanotubes and their toxicity. Nanotoxicology 1: 167–197 and references therein.CrossRefGoogle Scholar
  19. Jaurand, M.C.F., Renier, A. and Daubriac, J. (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol. 6: 16.PubMedCrossRefGoogle Scholar
  20. Kam, N.W., O’Connell, M., Wisdom, J.A. and Dai, H. (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102: 11600–11605.PubMedCrossRefGoogle Scholar
  21. Lee, K., Duchamp, M., Kulik, G., Magrez, A., Seo, J.W., Jeney, S., Kulik, A.J. and Forró, L. (2007) Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling. Appl. Phys. Lett. 91: 173112.CrossRefGoogle Scholar
  22. Lewinski, N., Colvin, V., Drezek, R. (2008) Cytotoxicity of nanoparticles. Small 4: 26–49.PubMedCrossRefGoogle Scholar
  23. Lin, Y., Taylor, S., Li, H.P., Fernando, K.A.S., Qu, L.W., Wang, W., Gu, L., Zhou, B. and Sun, Y.P. (2004) Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14: 527–541.CrossRefGoogle Scholar
  24. Lomer, M.C.E., Thompson, R.P.H. and Powell, J.J. (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 61: 123–130.PubMedCrossRefGoogle Scholar
  25. Maetzler, W., Nitsch, C., Bendfeldt, K., Racay, P., Vollenweider, F. and Schwaller, B. (2004) Ectopic parvalbumin expression in mouse forebrain neurons increases excitotoxic injury provoked by ibotenic acid injection into the striatum. Exp. Neurol. 186: 78–88.PubMedCrossRefGoogle Scholar
  26. Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B. and Forró, L. (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6: 1121–1125.PubMedCrossRefGoogle Scholar
  27. Magrez, A., Horvath, L., Smajda, R., Salicio, V., Pasquier, N., Forró, L. and Schwaller, B. (2009) Cellular toxicity of TiO2-based nanofilaments. Acs Nano 3: 2274–2280.PubMedCrossRefGoogle Scholar
  28. Mills, A., Davies, R.H. and Worsley, D. (1993) Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 22: 417–425.CrossRefGoogle Scholar
  29. Nohynek, G.J., Lademann, J., Ribaud, C. and Roberts, M.S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37: 251–277.PubMedCrossRefGoogle Scholar
  30. Pacurari, M., Yin, X.J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Ducatman, B.S., Chirila, M., Endo, M., Castranova, V. and Vallyathan, V. (2008) Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology 2: 155–170.CrossRefGoogle Scholar
  31. Patzke, G.R., Krumeich, F. and Nesper, R. (2002) Oxidic nanotubes and nanorods – anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. Engl. 41: 2446–2461.PubMedCrossRefGoogle Scholar
  32. Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3: 423–428.PubMedCrossRefGoogle Scholar
  33. Pulskamp, K., Diabate, S. and Krug, H.F. (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168: 58–74.PubMedCrossRefGoogle Scholar
  34. Rao, C.N.R. and Nath, M. (2003) Inorganic nanotubes. Dalton Trans. 1: 1–24.CrossRefGoogle Scholar
  35. Rao, C.N.R., Vivekchand, S.R.C., Biswasa, K. and Govindaraja, A. (2007) Synthesis of inorganic nanomaterials. Dalton Trans. 34: 3728–3749.PubMedCrossRefGoogle Scholar
  36. Robertson, J. (2006) Growth of nanotubes for electronics. Mater. Today 10: 36–43.CrossRefGoogle Scholar
  37. Shankar, K., Bandara, J., Paulose, M., Wietasch, H., Varghese, O.K., Mor, G., LaTempa, T.J., Thelakkat, M. and Grimes, C.A. (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett. 8: 1654–1659.PubMedCrossRefGoogle Scholar
  38. Shi, X.F., Sitharaman, B., Pham, Q.P., Spicer, P.P., Hudson, J.L., Wilson, L.J., Tour, J.M., Raphael, R.M. and Mikos, A.G. (2008) In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J. Biomed. Mater. Res. A 86A: 813–823.CrossRefGoogle Scholar
  39. Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., Maynard, A. and Baron, P. (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909–1926.PubMedCrossRefGoogle Scholar
  40. Shvedova, A.A., Kisin, E.R., Porter, D., Schulte, P., Kagan, V.E., Fadeel, B. and Castranova, V. (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Ther. 121: 192–204.PubMedCrossRefGoogle Scholar
  41. Simon-Deckers, A., Gouget, B., Mayne-L’hermite, M., Herlin-Boime, N., Reynaud, C. and Carriere, M. (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253: 137–146.PubMedCrossRefGoogle Scholar
  42. Smart, S.K., Cassady, A.I., Lu, G.Q. and Martin, D.J. (2006) The biocompatibility of carbon nanotubes. Carbon 44: 1034–1047.CrossRefGoogle Scholar
  43. Tabet, L., Bussy, C., Amara, N., Setyan, A., Grodet, A., Rossi, M.J., Pairon, J.C., Boczkowski, J. and Lanone, S. (2009) Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72: 60–73.PubMedCrossRefGoogle Scholar
  44. Vileno, B., Lekka, M., Sienkiewicz, A., Jeney, S., Stoessel, G., Lekki, J., Forró, L. and Stachura, Z. (2007) Stiffness alterations of single cells induced by UV in the presence of nanoTiO2. Environ. Sci. Technol.Stiffness alterations of single cells induced by UV in the presence of nanoTiO2. Environ. Sci. Technol 41: 5149–5153.PubMedCrossRefGoogle Scholar
  45. Wang, J., Lee, C.H. and Yap, Y.K. (2010) Recent advancements in boron nitride nanotubes. Nanoscale 2: 2028–2034.PubMedCrossRefGoogle Scholar
  46. Warheit, D.B., Hoke, R.A., Finlay, C., Donner, E.M., Reed, K.L. and Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 171: 99–110.PubMedCrossRefGoogle Scholar
  47. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. and Bruinink, A. (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168: 121–131.PubMedCrossRefGoogle Scholar
  48. Worle-Knirsch, J.M., Pulskamp, K. and Krug, H.F. (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6: 1261–1268.PubMedCrossRefGoogle Scholar
  49. Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.P., Gennaro, R., Prato, M. and Bianco, A. (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl. 44: 6358–6362.PubMedCrossRefGoogle Scholar
  50. Ye, S.F., Wu, Y.H., Hou, Z.Q. and Zhang, Q.Q. (2009) ROS and NF-kappa B are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem. Biophys. Res. Commun. 379: 643–648.PubMedCrossRefGoogle Scholar
  51. Zhi, C.Y., Bando, Y., Tan, C.C. and Golberg, D. (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135: 67–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Medicine, Unit of AnatomyUniversity of FribourgFribourgSwitzerland
  2. 2.Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations