Skip to main content

Toxicity Study of Nanofibers

  • Conference paper
  • First Online:
Book cover Supramolecular Structure and Function 10

Abstract

The major contribution of nanotechnology to our life is the controlled synthesis of a large variety of nanofilaments (nanowires and nanotubes) which could be the basis of future devices. Although the expectations are large concerning the improvement of our everyday life due to nanostructures (sensors, vectors for therapies, photovoltaic devices, fast integrated circuits etc.), there is a growing fear related to their possible health hazards, strongly reminiscent to those of asbestos. We have studied 3 model nanofilaments: TiO2 nanowires, carbon and boron nitride (BN) nanotubes using MTT assays. We tried to unravel the role of local catalytic activity, the importance of structural defects, functional groups and the tortuosity of these nanofilaments in their alteration of cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrett, J.C., Lamb, P.W. and Wiseman, R.W. (1989) Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ. Health Perspect. 81: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Bianco, A., Kostarelos, K. and Prato, M. (2005) Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9: 674–679.

    Article  PubMed  CAS  Google Scholar 

  • Card, J.W., Zeldin, D.C., Bonner, J.C. and Nestmann, E.R. (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell Mol. Physiol. 295: L400–L411.

    Article  PubMed  CAS  Google Scholar 

  • Carey, J.D. (2003) Engineering the next generation of large-area displays: prospects and pitfalls. Philos. Trans. A Math. Phys. Eng. Sci. 361: 2891–2907.

    Article  CAS  Google Scholar 

  • Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z. et al. (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131(3): 890–891

    Article  PubMed  CAS  Google Scholar 

  • Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K. and Beguin, F. (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44: 1106–1111.

    Article  CAS  Google Scholar 

  • Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A. (1995) Boron-nitride nanotubes. Science 269: 966–967.

    Article  PubMed  CAS  Google Scholar 

  • Ciofani, G., Raffa, V., Menciassi, A. and Cuschieri, A. (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101: 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Dransfield, G.P. (2000) Inorganic sunscreens. Radiat. Prot. Dosimetry 91: 271–273.

    Google Scholar 

  • Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W. and van Ravenzwaay, B. (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82: 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Golberg, D., Bando, Y., Kurashima, K. and Sato, T. (2001) Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44: 1561–1565.

    Article  CAS  Google Scholar 

  • Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. and Zhi, C. (2010) Boron nitride nanotubes and nanosheets. Acs Nano 4: 2979–2993.

    Article  PubMed  CAS  Google Scholar 

  • Gueneau-Rancurel, L. (2007) Chemistry for architecture: the self-cleaning glass. Actual Chim. 311: 6–10.

    CAS  Google Scholar 

  • Hafner, J.H., Cheung, C.L., Woolley, A.T. and Lieber, C.M. (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77: 73–110.

    Article  PubMed  CAS  Google Scholar 

  • Hoet, P.H., Bruske-Hohlfeld, I. and Salata, O.V. (2004) Nanoparticles – known and unknown health risks. J. Nanobiotechnol. 2: 12.

    Article  Google Scholar 

  • Horváth, L., Magrez, A., Forró, L. and Schwaller, B. (2010) Cell type dependence of carbon based nanomaterial toxicity. Physica Status Solidi (B). 247: 3059–3062.

    Google Scholar 

  • Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58.

    Article  CAS  Google Scholar 

  • Jain, A.K., Mehra, N.K., Lodhi, N., Dubey, V., Mishra, D.K., Jain, P.K. and Jain, N.K. (2007) Carbon nanotubes and their toxicity. Nanotoxicology 1: 167–197 and references therein.

    Article  CAS  Google Scholar 

  • Jaurand, M.C.F., Renier, A. and Daubriac, J. (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol. 6: 16.

    Article  PubMed  Google Scholar 

  • Kam, N.W., O’Connell, M., Wisdom, J.A. and Dai, H. (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102: 11600–11605.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K., Duchamp, M., Kulik, G., Magrez, A., Seo, J.W., Jeney, S., Kulik, A.J. and Forró, L. (2007) Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling. Appl. Phys. Lett. 91: 173112.

    Article  Google Scholar 

  • Lewinski, N., Colvin, V., Drezek, R. (2008) Cytotoxicity of nanoparticles. Small 4: 26–49.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., Taylor, S., Li, H.P., Fernando, K.A.S., Qu, L.W., Wang, W., Gu, L., Zhou, B. and Sun, Y.P. (2004) Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14: 527–541.

    Article  CAS  Google Scholar 

  • Lomer, M.C.E., Thompson, R.P.H. and Powell, J.J. (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 61: 123–130.

    Article  PubMed  Google Scholar 

  • Maetzler, W., Nitsch, C., Bendfeldt, K., Racay, P., Vollenweider, F. and Schwaller, B. (2004) Ectopic parvalbumin expression in mouse forebrain neurons increases excitotoxic injury provoked by ibotenic acid injection into the striatum. Exp. Neurol. 186: 78–88.

    Article  PubMed  CAS  Google Scholar 

  • Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B. and Forró, L. (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6: 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  • Magrez, A., Horvath, L., Smajda, R., Salicio, V., Pasquier, N., Forró, L. and Schwaller, B. (2009) Cellular toxicity of TiO2-based nanofilaments. Acs Nano 3: 2274–2280.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A., Davies, R.H. and Worsley, D. (1993) Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 22: 417–425.

    Article  CAS  Google Scholar 

  • Nohynek, G.J., Lademann, J., Ribaud, C. and Roberts, M.S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37: 251–277.

    Article  PubMed  CAS  Google Scholar 

  • Pacurari, M., Yin, X.J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Ducatman, B.S., Chirila, M., Endo, M., Castranova, V. and Vallyathan, V. (2008) Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology 2: 155–170.

    Article  CAS  Google Scholar 

  • Patzke, G.R., Krumeich, F. and Nesper, R. (2002) Oxidic nanotubes and nanorods – anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. Engl. 41: 2446–2461.

    Article  PubMed  CAS  Google Scholar 

  • Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3: 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Pulskamp, K., Diabate, S. and Krug, H.F. (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168: 58–74.

    Article  PubMed  CAS  Google Scholar 

  • Rao, C.N.R. and Nath, M. (2003) Inorganic nanotubes. Dalton Trans. 1: 1–24.

    Article  Google Scholar 

  • Rao, C.N.R., Vivekchand, S.R.C., Biswasa, K. and Govindaraja, A. (2007) Synthesis of inorganic nanomaterials. Dalton Trans. 34: 3728–3749.

    Article  PubMed  Google Scholar 

  • Robertson, J. (2006) Growth of nanotubes for electronics. Mater. Today 10: 36–43.

    Article  Google Scholar 

  • Shankar, K., Bandara, J., Paulose, M., Wietasch, H., Varghese, O.K., Mor, G., LaTempa, T.J., Thelakkat, M. and Grimes, C.A. (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett. 8: 1654–1659.

    Article  PubMed  CAS  Google Scholar 

  • Shi, X.F., Sitharaman, B., Pham, Q.P., Spicer, P.P., Hudson, J.L., Wilson, L.J., Tour, J.M., Raphael, R.M. and Mikos, A.G. (2008) In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J. Biomed. Mater. Res. A 86A: 813–823.

    Article  CAS  Google Scholar 

  • Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., Maynard, A. and Baron, P. (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909–1926.

    Article  PubMed  CAS  Google Scholar 

  • Shvedova, A.A., Kisin, E.R., Porter, D., Schulte, P., Kagan, V.E., Fadeel, B. and Castranova, V. (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Ther. 121: 192–204.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Deckers, A., Gouget, B., Mayne-L’hermite, M., Herlin-Boime, N., Reynaud, C. and Carriere, M. (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Smart, S.K., Cassady, A.I., Lu, G.Q. and Martin, D.J. (2006) The biocompatibility of carbon nanotubes. Carbon 44: 1034–1047.

    Article  CAS  Google Scholar 

  • Tabet, L., Bussy, C., Amara, N., Setyan, A., Grodet, A., Rossi, M.J., Pairon, J.C., Boczkowski, J. and Lanone, S. (2009) Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72: 60–73.

    Article  PubMed  CAS  Google Scholar 

  • Vileno, B., Lekka, M., Sienkiewicz, A., Jeney, S., Stoessel, G., Lekki, J., Forró, L. and Stachura, Z. (2007) Stiffness alterations of single cells induced by UV in the presence of nanoTiO2. Environ. Sci. Technol.Stiffness alterations of single cells induced by UV in the presence of nanoTiO2. Environ. Sci. Technol 41: 5149–5153.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Lee, C.H. and Yap, Y.K. (2010) Recent advancements in boron nitride nanotubes. Nanoscale 2: 2028–2034.

    Article  PubMed  CAS  Google Scholar 

  • Warheit, D.B., Hoke, R.A., Finlay, C., Donner, E.M., Reed, K.L. and Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 171: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. and Bruinink, A. (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168: 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Worle-Knirsch, J.M., Pulskamp, K. and Krug, H.F. (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6: 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.P., Gennaro, R., Prato, M. and Bianco, A. (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl. 44: 6358–6362.

    Article  PubMed  CAS  Google Scholar 

  • Ye, S.F., Wu, Y.H., Hou, Z.Q. and Zhang, Q.Q. (2009) ROS and NF-kappa B are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem. Biophys. Res. Commun. 379: 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Zhi, C.Y., Bando, Y., Tan, C.C. and Golberg, D. (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135: 67–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was the subject of one of my presentations (L.F) at the Biophysics Summer School in Rovinj, the last one which Greta Pifat-Mrzljak could organize. During 30 years with lot of devotion and professionalism she brought together excellent speakers and hundreds of young students. Under the Mediterranean sky she cultivated a very creative atmosphere. Her memory occupies a permanent place in our hearts.

This work is supported by the Swiss National Science Foundation. The supply of BN nanotubes by Dmitri Goldberg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenke Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Horváth, L., Magrez, A., Schwaller, B., Forró, L. (2011). Toxicity Study of Nanofibers. In: Brnjas-Kraljević, J., Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0893-8_9

Download citation

Publish with us

Policies and ethics