Polyglutamine Diseases and Neurodegeneration: The Example of Ataxin-1

Conference paper


A family of nine human neurodegenerative diseases is caused by anomalous expansion of polyglutamine (polyQ) tracts in the carrier proteins. Understanding the cellular and molecular mechanisms which lead to disease is essential both for understanding these pathologies and for designing appropriate diagnostics. We review here, as a paradigmatic example, the knowledge accumulated for ataxin-1, the protein responsible for Spinocerebellar Ataxia type 1 (SCA1) and one of the smallest representatives of the polyQ family. It appears clear from this overview that understanding the properties and the interaction networks formed by both expanded and non-expanded ataxin-1 is an essential step for our comprehension of the non-pathologic function of the protein and of its role in disease. A better understanding will be reached in the future from integrating knowledge arising from different fields.


Ataxin-1 SCA1 Neurodegenerative disease Polyglutamine CAG triplet AXH ULM Molecular switch Transcriptional repression RNA processing Protein context 



We would like to thank Rajesh P. Menon and Paola Giunti for helpful comments.


  1. Al-Ramahi, I., Lam, Y.C., Chen, H.K., de Gouyon, B., Zhang, M., Perez, A.M., Branco, J., de Haro, M., Patterson, C., Zoghbi, H.Y. et al. (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J. Biol. Chem. 281: 26714–26724.PubMedCrossRefGoogle Scholar
  2. Banfi, S., Servadio, A., Chung, M.Y., Kwiatkowski, T.J., Jr., McCall, A.E., Duvick, L.A., Shen, Y., Roth, E.J., Orr, H.T. and Zoghbi, H.Y. (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat. Genet. 7: 513–520.PubMedCrossRefGoogle Scholar
  3. Bauer, P.O. and Nukina, N. (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J. Neurochem. 110: 1737–1765.PubMedCrossRefGoogle Scholar
  4. Bolger, T.A., Zhao, X., Cohen, T.J., Tsai, C.C. and Yao, T.P. (2007) The neurodegenerative disease protein ataxin-1 antagonizes the neuronal survival function of myocyte enhancer factor-2. J. Biol. Chem. 282: 29186–29192.PubMedCrossRefGoogle Scholar
  5. Bowman, A.B., Lam, Y.C., Jafar-Nejad, P., Chen, H.K., Richman, R., Samaco, R.C., Fryer, J.D., Kahle, J.J., Orr, H.T. and Zoghbi, H.Y. (2007) Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat. Genet. 39: 373–379.PubMedCrossRefGoogle Scholar
  6. Burright, E.N., Davidson, J.D., Duvick, L.A., Koshy, B., Zoghbi, H.Y. and Orr, H.T. (1997) Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum. Mol. Genet. 6: 513–518.PubMedCrossRefGoogle Scholar
  7. Chen, H.K., Fernandez-Funez, P., Acevedo, S.F., Lam, Y.C., Kaytor, M.D., Fernandez, M.H., Aitken, A., Skoulakis, E.M., Orr, H.T., Botas, J. et al. (2003) Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113: 457–468.PubMedCrossRefGoogle Scholar
  8. Chen, Y.W., Allen, M.D., Veprintsev, D.B., Lowe, J. and Bycroft, M. (2004) The structure of the AXH domain of spinocerebellar ataxin-1. J. Biol. Chem. 279: 3758–3765.PubMedCrossRefGoogle Scholar
  9. Choi, J.Y., Ryu, J.H., Kim, H.S., Park, S.G., Bae, K.H., Kang, S., Myung, P.K., Cho, S., Park, B.C. and Lee do, H. (2007) Co-chaperone CHIP promotes aggregation of ataxin-1. Mol. Cell Neurosci. 34: 69–79.PubMedCrossRefGoogle Scholar
  10. Cummings, C.J., Mancini, M.A., Antalffy, B., DeFranco, D.B., Orr, H.T. and Zoghbi, H.Y. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19: 148–154.PubMedCrossRefGoogle Scholar
  11. Cummings, C.J., Reinstein, E., Sun, Y., Antalffy, B., Jiang, Y., Ciechanover, A., Orr, H.T., Beaudet, A.L. and Zoghbi, H.Y. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24: 879–892.PubMedCrossRefGoogle Scholar
  12. Cvetanovic, M., Rooney, R.J., Garcia, J.J., Toporovskaya, N., Zoghbi, H.Y. and Opal, P. (2007) The role of LANP and ataxin 1 in E4F-mediated transcriptional repression. EMBO Rep. 8: 671–677.PubMedCrossRefGoogle Scholar
  13. Davidson, J.D., Riley, B., Burright, E.N., Duvick, L.A., Zoghbi, H.Y. and Orr, H.T. (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum. Mol. Genet. 9: 2305–2312.PubMedGoogle Scholar
  14. de Chiara, C., Giannini, C., Adinolfi, S., de Boer, J., Guida, S., Ramos, A., Jodice, C., Kioussis, D. and Pastore, A. (2003) The AXH module: an independently folded domain common to ataxin-1 and HBP1. FEBS Lett. 551: 107–112.PubMedCrossRefGoogle Scholar
  15. de Chiara, C., Menon, R.P., Adinolfi, S., de Boer, J., Ktistaki, E., Kelly, G., Calder, L., Kioussis, D. and Pastore, A. (2005a) The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure 13: 743–753.PubMedCrossRefGoogle Scholar
  16. de Chiara, C., Menon, R.P., Dal Piaz, F., Calder, L. and Pastore, A. (2005b) Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 354: 883–893.PubMedCrossRefGoogle Scholar
  17. de Chiara, C., Menon, R.P., Strom, M., Gibson, T.J. and Pastore, A. (2009) Phosphorylation of s776 and 14-3-3 binding modulate ataxin-1 interaction with splicing factors. PLoS One 4: e8372.PubMedCrossRefGoogle Scholar
  18. Emamian, E.S., Kaytor, M.D., Duvick, L.A., Zu, T., Tousey, S.K., Zoghbi, H.Y., Clark, H.B. and Orr, H.T. (2003) Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38: 375–387.PubMedCrossRefGoogle Scholar
  19. Fernandez-Funez, P., Nino-Rosales, M.L., de Gouyon, B., She, W.C., Luchak, J.M., Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P.J. et al. (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408: 101–106.PubMedCrossRefGoogle Scholar
  20. Genis, D., Matilla, T., Volpini, V., Rosell, J., Davalos, A., Ferrer, I., Molins, A. and Estivill, X. (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45: 24–30.PubMedGoogle Scholar
  21. Goold, R., Hubank, M., Hunt, A., Holton, J., Menon, R.P., Revesz, T., Pandolfo, M. and Matilla-Duenas, A. (2007) Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1. Hum. Mol. Genet. 16: 2122–2134.PubMedCrossRefGoogle Scholar
  22. Hong, S., Kim, S.J., Ka, S., Choi, I. and Kang, S. (2002) USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Mol. Cell. Neurosci. 20: 298–306.PubMedCrossRefGoogle Scholar
  23. Irwin, S., Vandelft, M., Pinchev, D., Howell, J.L., Graczyk, J., Orr, H.T. and Truant, R. (2005) RNA association and nucleocytoplasmic shuttling by ataxin-1. J. Cell Sci. 118: 233–242.PubMedCrossRefGoogle Scholar
  24. Jayaraman, M., Kodali, R. and Wetzel, R. (2009) The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng. Des. Sel. 22: 469–478.PubMedCrossRefGoogle Scholar
  25. Jodice, C., Malaspina, P., Persichetti, F., Novelletto, A., Spadaro, M., Giunti, P., Morocutti, C., Terrenato, L., Harding, A.E. and Frontali, M. (1994) Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am. J. Hum. Genet. 54: 959–965.PubMedGoogle Scholar
  26. Johnson, E.S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73: 355–382.PubMedCrossRefGoogle Scholar
  27. Jorgensen, N.D., Andresen, J.M., Lagalwar, S., Armstrong, B., Stevens, S., Byam, C.E., Duvick, L.A., Lai, S., Jafar-Nejad, P., Zoghbi, H.Y. et al. (2009) Phosphorylation of ATXN1 at Ser776 in the cerebellum. J. Neurochem. 110: 675–686.PubMedCrossRefGoogle Scholar
  28. Klement, I.A., Skinner, P.J., Kaytor, M.D., Yi, H., Hersch, S.M., Clark, H.B., Zoghbi, H.Y. and Orr, H.T. (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53.PubMedCrossRefGoogle Scholar
  29. Klement, I.A., Zoghbi, H.Y. and Orr, H.T. (1999) Pathogenesis of polyglutamine-induced disease: a model for SCA1. Mol. Genet. Metab. 66: 172–178.PubMedCrossRefGoogle Scholar
  30. Lam, Y.C., Bowman, A.B., Jafar-Nejad, P., Lim, J., Richman, R., Fryer, J.D., Hyun, E.D., Duvick, L.A., Orr, H.T., Botas, J. et al. (2006) ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127: 1335–1347.PubMedCrossRefGoogle Scholar
  31. Lesage, F., Hugnot, J.P., Amri, E.Z., Grimaldi, P., Barhanin, J. and Lazdunski, M. (1994) Expression cloning in K+ transport defective yeast and distribution of HBP1, a new putative HMG transcriptional regulator. Nucl. Acids Res. 22: 3685–3688.PubMedCrossRefGoogle Scholar
  32. Lim, J., Hao, T., Shaw, C., Patel, A.J., Szabo, G., Rual, J.F., Fisk, C.J., Li, N., Smolyar, A., Hill, D.E. et al. (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125: 801–814.PubMedCrossRefGoogle Scholar
  33. Lim, J., Crespo-Barreto, J., Jafar-Nejad, P., Bowman, A.B., Richman, R., Hill, D.E., Orr, H.T. and Zoghbi, H.Y. (2008) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452: 713–718.PubMedCrossRefGoogle Scholar
  34. Lin, X., Antalffy, B., Kang, D., Orr, H.T. and Zoghbi, H.Y. (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat. Neurosci. 3: 157–163.PubMedCrossRefGoogle Scholar
  35. Masino, L., Nicastro, G., Menon, R.P., Dal Piaz, F., Calder, L. and Pastore, A. (2004) Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J. Mol. Biol. 344: 1021–1035.PubMedCrossRefGoogle Scholar
  36. Matilla-Duenas, A., Goold, R. and Giunti, P. (2008) Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 7: 106–114.PubMedCrossRefGoogle Scholar
  37. Matilla, A., Koshy, B.T., Cummings, C.J., Isobe, T., Orr, H.T. and Zoghbi, H.Y. (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389: 974–978.PubMedCrossRefGoogle Scholar
  38. Mizutani, A., Wang, L., Rajan, H., Vig, P.J., Alaynick, W.A., Thaler, J.P. and Tsai, C.C. (2005) Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J. 24: 3339–3351.PubMedCrossRefGoogle Scholar
  39. Murzin, A.G. (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12: 861–867.PubMedGoogle Scholar
  40. Mushegian, A.R., Bassett, D.E., Jr., Boguski, M.S., Bork, P. and Koonin, E.V. (1997) Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc. Natl. Acad. Sci. USA 94: 5831–5836.PubMedCrossRefGoogle Scholar
  41. Okazawa, H., Rich, T., Chang, A., Lin, X., Waragai, M., Kajikawa, M., Enokido, Y., Komuro, A., Kato, S., Shibata, M. et al. (2002) Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron 34: 701–713.PubMedCrossRefGoogle Scholar
  42. Orr, H.T., Chung, M.Y., Banfi, S., Kwiatkowski, T.J., Jr., Servadio, A., Beaudet, A.L., McCall, A.E., Duvick, L.A., Ranum, L.P. and Zoghbi, H.Y. (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4: 221–226.PubMedCrossRefGoogle Scholar
  43. Orr, H.T. and Zoghbi, H.Y. (2001) SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum. Mol. Genet. 10: 2307–2311.PubMedCrossRefGoogle Scholar
  44. Orr, H.T. and Zoghbi, H.Y. (2007) Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30: 575–621.PubMedCrossRefGoogle Scholar
  45. Park, Y., Hong, S., Kim, S.J. and Kang, S. (2005) Proteasome function is inhibited by polyglutamine-expanded ataxin-1, the SCA1 gene product. Mol. Cells 19: 23–30.PubMedGoogle Scholar
  46. Riley, B.E., Xu, Y., Zoghbi, H.Y. and Orr, H.T. (2004) The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up. J. Biol. Chem. 279: 42290–42301.PubMedCrossRefGoogle Scholar
  47. Riley, B.E., Zoghbi, H.Y. and Orr, H.T. (2005) SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J. Biol. Chem. 280: 21942–21948.PubMedCrossRefGoogle Scholar
  48. Saunders, H.M. and Bottomley, S.P. (2009) Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins. Protein Eng. Des. Sel. 22: 447–451.PubMedCrossRefGoogle Scholar
  49. Seeler, J.S. and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4: 690–699.PubMedCrossRefGoogle Scholar
  50. Serra, H.G., Byam, C.E., Lande, J.D., Tousey, S.K., Zoghbi, H.Y. and Orr, H.T. (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum. Mol. Genet. 13: 2535–2543.PubMedCrossRefGoogle Scholar
  51. Serra, H.G., Duvick, L., Zu, T., Carlson, K., Stevens, S., Jorgensen, N., Lysholm, A., Burright, E., Zoghbi, H.Y., Clark, H.B. et al. (2006) RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127: 697–708.PubMedCrossRefGoogle Scholar
  52. Shao, J. and Diamond, M.I. (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum. Mol. Genet. 16 Spec No. 2: R115–123.CrossRefGoogle Scholar
  53. Tsai, C.C., Kao, H.Y., Mitzutani, A., Banayo, E., Rajan, H., McKeown, M. and Evans, R.M. (2004) Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl. Acad. Sci. USA 101: 4047–4052.PubMedCrossRefGoogle Scholar
  54. Tsuda, H., Jafar-Nejad, H., Patel, A.J., Sun, Y., Chen, H.K., Rose, M.F., Venken, K.J., Botas, J., Orr, H.T., Bellen, H.J. et al. (2005) The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell 122: 633–644.PubMedCrossRefGoogle Scholar
  55. Yue, S., Serra, H.G., Zoghbi, H.Y. and Orr, H.T. (2001) The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum. Mol. Genet. 10: 25–30.PubMedCrossRefGoogle Scholar
  56. Zoghbi, H.Y. (2000) Spinocerebellar ataxias. Neurobiol. Dis. 7: 523–527.PubMedCrossRefGoogle Scholar
  57. Zoghbi, H.Y. and Orr, H.T. (2000) Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23: 217–247.PubMedCrossRefGoogle Scholar
  58. Zoghbi, H.Y. and Orr, H.T. (2009) Pathogenic mechanisms of a polyglutamine mediated neurodegenerative disease: SCA1. J. Biol. Chem. 284: 7425–1749.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Institute for Medical Research – MRCLondonUK

Personalised recommendations