Skip to main content

Fluorescence Correlation Spectroscopy: Principles and Developments

  • Conference paper
  • First Online:
Supramolecular Structure and Function 10

Abstract

Twenty years ago, fluorescence measurements at low concentrations were difficult due to the weak fluorescence signal and intrinsic fluctuations of the sample. With the development of FCS and its implementation on a confocal microscope, it is possible to use the inherent fluctuations to gain information over the concentration, molecular brightness, microscopic rate constants for reactions and mobility of the measured sample. In recent years, there has been a strong increase in the development and application of fluctuation methods. With pulsed interleaved excitation, stoichiometry information can be obtained and spectral cross-talk can be eliminated from FCCS experiments. An elegant implementation of two-focus FCS has also been introduced to allow absolute measurements of diffusion coefficient without precise knowledge of the psf of the microscope and is less sensitive to the laser excitation intensity and saturation effects. Scanning methods such as Scanning FCS and RICS increase the effective volume, which is advantageous for live-cell measurements where diffusion is slow and photobleaching is a problem. In this article, describe the basics of FCS and its limitations as well as a short discussion of a handful of emerging techniques. There are still many other equally interesting applications of fluorescence fluctuation spectroscopy that we have not been able to touch upon. And, if the past is any indication of the future, there will be a number of novel fluorescence fluctuation spectroscopy methods emerging in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also possible to perform FCS using Total Internal Reflection Excitation, but a description of this method is beyond the scope of this publication. For details see Thompson et al. (1981).

  2. 2.

    For simplicity, we assume that the quantum yields of the green and red fluorophores are identical in the single and double-labeled complexes. The more general equations can be found in Müller et al. Biophys J 89:3508.

  3. 3.

    Polarized detection alone would not be sufficient to separate the two volumes as the detected fluorescence is strongly depolarized due to rotation of the fluorophores on the time scale of the fluorescence lifetime.

Abbreviations

2fFCS:

Two-focus fluorescence correlation spectroscopy

ACF:

Autocorrelation function

ALEX:

Alternating laser excitation

CCF:

Cross-correlation function

ccRISC:

Cross-correlation raster image correlation spectroscopy

FCS:

Fluorescence correlation spectroscopy

FCCS:

Fluorescence cross-correlation spectroscopy

FRET:

Förster resonance energy transfer

PIE:

Pulsed interleaved excitation

RISC:

Raster image correlation spectroscopy

References

  • Aragón, S.F. and Pecora, R. (1976) Fluorescence correlation spectroscopy as a probe of molecular dynamics. J. Chem. Phys. 64: 1791–8103.

    Article  Google Scholar 

  • Berland, K.M., So, P.T., Chen, Y., Mantulin, W.W. and Gratton, E. (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys. J. 71: 410–420.

    Article  PubMed  CAS  Google Scholar 

  • Bismuto, E., Gratton, E. and Lamb, D.C. (2001) Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophys. J. 81: 3510–3521.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, G., Krichevsky, O. and Libchaber, A. (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. USA 95: 8602–8606.

    Article  PubMed  CAS  Google Scholar 

  • Boukobza, E., Sonnenfeld, A. and Haran, G. (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105: 12165–12170.

    Article  CAS  Google Scholar 

  • Brinkmeier, M., Dorre, K., Riebeseel, K. and Rigler, R. (1997) Confocal spectroscopy in microstructures. Biophys. Chem. 66: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmeier, M., Dorre, K., Stephan, J. and Eigen, M. (1999) Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal. Chem. 71: 609–616.

    Article  CAS  Google Scholar 

  • Brown, C.M., Dalal, R.B., Hebert, B., Digman, M.A., Horwitz, A.R. and Gratton, E. (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc. 229: 78–91.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.H. and Twiss, R.Q. (1956) Correlation between photons in two coherent beams of light. Nature 177: 27–29.

    Article  Google Scholar 

  • Dertinger, T., Pacheco, V., von der Hocht, I., Hartmann, R., Gregor, I. and Enderlein, J. (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R.M., Cubitt, A.B., Tsien, R.Y. and Moerner, W.E. (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Digman, M.A., Brown, C.M., Sengupta, P., Wiseman, P.W., Horwitz, A.R. and Gratton, E. (2005a). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89: 1317–1327.

    Article  PubMed  CAS  Google Scholar 

  • Digman, M.A., Sengupta, P., Wiseman, P.W., Brown, C.M., Horwitz, A.R. and Gratton, E. (2005b). Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys. J. 88: L33–36.

    Article  Google Scholar 

  • Digman, M.A., Dalal, R., Horwitz, A.F. and Gratton, E. (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J. 94: 2320–2332.

    Article  PubMed  CAS  Google Scholar 

  • Digman, M.A., Wiseman, P.W., Choi, C., Horwitz, A.R. and Gratton, E. (2009a). Stoichiometry of molecular complexes at adhesions in living cells. Proc. Natl. Acad. Sci. USA 106: 2170–2175.

    Article  PubMed  CAS  Google Scholar 

  • Digman, M.A., Wiseman, P.W., Horwitz, A.R. and Gratton, E. (2009b). Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys. J. 96: 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, M. and Rigler, R. (1974) Rotational brownian motion and fluorescence intensity fluctuations. Chem. Phys. 4: 390–401.

    Article  CAS  Google Scholar 

  • Ehrenberg, M. and Rigler, R. (1976) Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q. Rev. Biophys. 9: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M. and Rigler, R. (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91: 5740–5747.

    Article  PubMed  CAS  Google Scholar 

  • Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17: 549–560.

    Article  CAS  Google Scholar 

  • Elson, E.L. and Magde, D. (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13: 1–27.

    Article  CAS  Google Scholar 

  • Felekyan, S., Kuhnemuth, R., Kudryavtsev, V., Sandhagen, C., Becker, W. and Seidel, C.A.M. (2005) Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76: 083104–083114.

    Article  Google Scholar 

  • Ha, T., Rasnik, I., Cheng, W., Babcock, H.P., Gauss, G.H., Lohman, T.M. and Chu, S. (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419: 638–641.

    Article  PubMed  CAS  Google Scholar 

  • Heimstadt, O. (1911) Das Fluoreszenzmicroskop. Z. wiss. Mikrosk. 28: 330.

    Google Scholar 

  • Kapanidis, A.N., Lee, N.K., Laurence, T.A., Doose, S., Margeat, E. and Weiss, S. (2004). Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101: 8936–8941.

    Article  PubMed  CAS  Google Scholar 

  • Kapanidis, A.N., Laurence, T.A., Lee, N.K., Margeat, E., Kong, X. and Weiss, S. (2005) Alternating-laser excitation of single molecules. Acc. Chem. Res. 38: 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Kask, P., Piksarv, P., Pooga, M., Mets, Ü. and Lippmaa, E. (1989) Separation of the rotational contribution in fluorescence correlation experiments. Biophys. J. 55: 213–220.

    Article  Google Scholar 

  • Kettling, U., Koltermann, A., Schwille, P. and Eigen, M. (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. USA 95: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  • Kohl, T., Heinze, K.G., Kuhlemann, R., Koltermann, A. and Schwille, P. (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc. Natl. Acad. Sci. USA 99: 12161–12166.

    Article  Google Scholar 

  • Koppel, D.E. (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A. 10: 1938–1945.

    Article  Google Scholar 

  • Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L. and Webb, W.W. (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 16: 1315–1329.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, D.C., Schenk, A., Röcker, C. and Nienhaus, G.U. (2000a). Determining chemical rate coefficients using time-gated fluorescence correlation spectroscopy. J. Phys. Org. Chem. 13: 654–658.

    Article  Google Scholar 

  • Lamb, D.C., Schenk, A., Röcker, C., Scalfi-Happ, C. and Nienhaus, G.U. (2000b). Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys. J. 79: 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N.K., Kapanidis, A.N., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R.H. and Weiss, S. (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88: 2939–2953.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, H. (1913) Das Lumineszenzmicroscop. Zeitschrift für Wissenschaftliche Microskopie 30: 417–470.

    Google Scholar 

  • Lu, H.P., Xun, L. and Xie, X.S. (1998) Single-molecule enzymatic dynamics. Science 282: 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  • Magde, D., Elson, E.L. and Webb, W.W. (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29: 705–708.

    Article  CAS  Google Scholar 

  • Magde, D., Elson, E.L. and Webb, W.W. (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13: 29–61.

    Article  PubMed  CAS  Google Scholar 

  • Magde, D. (1976) Chemical kinetics and fluorescence correlation spectroscopy. Q. Rev. Biophys. 9: 35–47.

    Article  CAS  Google Scholar 

  • Magde, D., Webb, W.W. and Elson, E.L. (1978) Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17: 361–376.

    Article  CAS  Google Scholar 

  • Meyer, T. and Schindler, H. (1988) Particle counting by fluorescence correlation spectroscopy. Simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys. J. 54: 983–993.

    Article  PubMed  CAS  Google Scholar 

  • Müller, B.K., Zaychikov, E., Bräuchle, C. and Lamb, D.C. (2005) Pulsed interleaved excitation. Biophys. J. 89: 3508–3522.

    Article  PubMed  Google Scholar 

  • Müller, C.B., Loman, A., Pacheco, V., Koberling, F., Willbold, D., Richtering, W. and Enderlein, J. (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83: 46001.

    Google Scholar 

  • Petrasek, Z. and Schwille, P. (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94: 1437–1448.

    Article  PubMed  CAS  Google Scholar 

  • Rauer, B., Neumann, E., Widengren, J. and Rigler, R. (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin a-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys. Chem. 58: 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, K. (1911) Das Fluorescenczmikroskop. Phys. Z. 12: 1010–1011.

    Google Scholar 

  • Rhoades, E., Gussakovsky, E. and Haran, G. (2003) Watching proteins fold one molecule at a time. Proc. Natl. Acad. Sci. USA 100: 3197–3202.

    Article  PubMed  CAS  Google Scholar 

  • Ries, J. and Schwille, P. (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys. J. 91: 1915–1924.

    Article  PubMed  CAS  Google Scholar 

  • Ries, J., Chiantia, S. and Schwille, P. (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 96: 1999–2008.

    Article  PubMed  CAS  Google Scholar 

  • Rigler, R., Kask, P., Mets, Ü. and Widengren, J. (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22: 169–175.

    Article  CAS  Google Scholar 

  • Schwille, P., Bieschke, J. and Oehlenschlager, F. (1997a). Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66: 211–228.

    Article  PubMed  CAS  Google Scholar 

  • Schwille, P., MeyerAlmes, F.J. and Rigler, R. (1997b). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72: 1878–1886.

    Article  PubMed  CAS  Google Scholar 

  • Svedberg, T. and Inouye, K. (1911) Eine neue Methode zur Prüfung der Gültigkeit des Boyle-Gay-Lussacschen Gesetzes für Kolloide Lösungen. Z. Phys. Chem. 77: 145–191.

    CAS  Google Scholar 

  • Thompson, N.L., Burghardt, T.P. and Axelrod, D. (1981) Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33: 435–454.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, N.L. (1991) Fluorescence correlation spectroscopy. In: Topics in fluorescence spectroscopy, volume 1: techniques, J.R. Lakowicz, ed. Plenum Press, New York, NY, pp. 337–378.

    Google Scholar 

  • Torres, T. and Levitus, M. (2007) Measuring conformational dynamics: a new FCS-FRET approach. J. Phys. Chem. B 111: 7392–7400.

    Article  PubMed  CAS  Google Scholar 

  • von Smoluchowski, M. (1906) Zur kinetischen Theorie dier Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 21: 756–780.

    Article  Google Scholar 

  • Webb, R.H. (1996) Confocal optical microscopy. Rep. Progr. Phys. 59: 427.

    Article  Google Scholar 

  • Wennmalm, S., Edman, L. and Rigler, R. (1997) Conformational fluctuations in single DNA molecules. Proc. Natl. Acad. Sci. USA 94: 10641–10646.

    Article  PubMed  CAS  Google Scholar 

  • Widengren, J., Rigler, R. and Mets, Ü. (1994) Triplet-state monitoring by fluorescence correlation spectroscopy. J. Fluoresc. 4: 255–258.

    Article  CAS  Google Scholar 

  • Widengren, J., Mets, Ü. and Rigler, R. (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 99: 13368–13379.

    Article  CAS  Google Scholar 

  • Widengren, J., Schweinberger, E., Berger, S. and Seidel, C.A.M. (2001) Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105: 6851–6866.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don C. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ivanchenko, S., Lamb, D.C. (2011). Fluorescence Correlation Spectroscopy: Principles and Developments. In: Brnjas-Kraljević, J., Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0893-8_1

Download citation

Publish with us

Policies and ethics