Skip to main content

Predicting Protein Functional Sites with Phylogenetic Motifs: Past, Present and Beyond

  • Chapter
  • First Online:
Protein Function Prediction for Omics Era

Abstract

More than sequence or structure, function imposes very tight constraints on the evolutionary variability within a protein family. As such, numerous functional site prediction methods are based on algorithms to uncover conserved regions that lead to conserved function. Nevertheless, evolution does allow for some systematic variability within functional regions. Based on this tenet, we have introduced the MINER algorithm to predict functional regions from phylogenetic motifs. Specifically, our approach identifies alignment fragments that parallel the overall phylogeny of the family, which are more likely to be functional due to increased evolutionary signature. In this chapter, we provide an overview of the method, summarize recent developments, and comment on future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.C., D., Livesay, D.R. A spectrum of phylogenetic-based approaches for predicting protein functional sites. Bioinformatics for systems biology Krawetz, S. (ed.) Humana Press, New York, NY: pp. 315–337 (2009).

    Google Scholar 

  2. Valdar, W.S. Scoring residue conservation. Proteins 48: 227–241 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Pupko, T. Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18: S71–S77 (2002).

    Article  PubMed  Google Scholar 

  4. Capra, J.A., Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 23: 1875–1882 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Lichtarge, O., et al. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257: 342–358 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. del Sol, A., et al. Automatic methods for predicting functionally important residues. Ann. Mat. Pura. Appl. 326: 1289–1302 (2003).

    Google Scholar 

  7. La, D., et al. Predicting protein functional sites with phylogenetic motifs. Proteins 58: 309–320 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Livesay, D.R., et al. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family. BMC Bioinform. 8: 397 (2007).

    Article  Google Scholar 

  9. K.C., D., Livesay, D.R. Improving position-specific predictions of protein functional sites using phylogenetic motifs. Bioinformatics 24: 2308–2316 (2008).

    Google Scholar 

  10. Livesay, D.R., et al. Conservation of electrostatic properties within enzyme families and superfamilies. Biochemistry 42: 3464–3473 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Roshan, U., et al. Improved phylogenetic motif identification using parsimony. Proc. IEEE Syms. Bioinform. Bioeng. BIBE05: 19–26 (2005).

    Google Scholar 

  12. Hulo, N., et al. Recent improvements to the PROSITE database. Nucleic Acids Res. 32: D134–D137 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Penny, D., Hendy, M. The use of tree comparison metrics. Sys. Zoo. 34: 75–82 (1985).

    Article  Google Scholar 

  14. Livesay, D.R., La, D. Probing the evolutionary origins and catalytic importance of conserved electrostatic networks in TIM-barrel proteins. Protein Sci. 14: 1158–1170 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. La, D., Livesay, D.R. Accurate functional site prediction using an automated algorithm suitable for heterogeneous datasets. BMC Bioinform. 6: 116 (2005).

    Article  Google Scholar 

  16. Aloy, P., Querol, E., Aviles, F.X., Sternberg, M.J.E. Automated structure-based prediction of functional sites in proteins. J. Mol. Biol. 311: 395–408 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Yamashita, A. Crystal structure of a bacterial homologue of Na+/Cl− dependent neurotransmitter transporters. Nature 437: 215–223 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. Kalinina, O.V. SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Res. 32: W424–W428 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Porter, C.T. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: D129–D133 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Manning, J.R., et al. The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinform. 9: 51 (2008).

    Article  Google Scholar 

  21. K.C., D., Livesay, D.R. Topology improves phylogenetic motif functional site predictions. Trans. Comp. Biol. Bioinf. (2010) In press.

    Google Scholar 

  22. Thompson, J.D., et al. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the Author, Department of Genome Sciences, University of Washington (2004).

    Google Scholar 

  24. Schmidt, H. A., et al. TREE-PUZZLE: Maximum Likelihood Phylogenetic Analysis Using Quartets and Parallel Computing. Bioinformatics 18: 502–504 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. La, D., Livesay, D.R. MINER: software for phylogenetic motif identification. Nucleic Acids Res. 33: W267–W270 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The development and application of MINER is based on the dedicated work of a number of people. Specifically, we wish to thank Dr. Usman Roshan, Ehsan Tabari, Brian Sutch, Patrick Kidd, and Dr. Sepehr Eskandari for contributions to the results discussed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis R. Livesay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Livesay, D.R., KC, D.B., La, D. (2011). Predicting Protein Functional Sites with Phylogenetic Motifs: Past, Present and Beyond. In: Kihara, D. (eds) Protein Function Prediction for Omics Era. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0881-5_5

Download citation

Publish with us

Policies and ethics