Skip to main content

Properties and Reactions of Singlet Dioxygen

  • Chapter
Active Oxygen in Chemistry

Abstract

The ground state of dioxygen is a triplet, paramagnetic because of two parallel electronic spins. There are two low-lying metastable electronically excited singlet states of dioxygen (with spectroscopic notations 1Σ+ g and 1Δg; see Fig. 4–1). Of these, only the reactive 1Δg state is believed to play a role in reactions in solution, and it is this state that will be implied by the term “singlet oxygen” or “singlet O2” throughout this chapter. The higher-energy 1Σ+ g state is deactivated to the 1Δg so rapidly that it has no chance to react. Singlet oxygen lies approximately 22.5 kcal /mol above the ground state; this energy corresponds to an infrared wavelength of 1270 nm, where it emits light. This chapter gives a brief survey of the sources, properties, chemistry, kinetics, and some methods of detection and characterization of singlet oxygen. Numerous reviews on various aspects of singlet oxygen chemistry have appeared and should be consulted for more complete references to this active field (Frimer, 1985; Gorman and Rodgers, 1989; Kanofsky, 1988b; Wasserman and Murray, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, W., and Erden, I. (1979) α-Pyrone Endoperoxides. Synthesis, Thermal Decomposition, and Chemiluminescence. J. Am. Chem. Soc., 101, 5692–5696.

    Article  CAS  Google Scholar 

  • Allen, R. C., Sternholm, R. L., and Steele, R. H. (1972) Evidence for the Generation of an Electronic Excitation State(s) in Human Polymorphonuclear Leukocytes and its Participation in Antibacterial Activity. Biochem. Biophys. Res. Comm., 47, 679–684.

    Article  CAS  Google Scholar 

  • Ando, W. (1981) Photooxidation of Organosulfur Compounds. Sulfur Rep., 1, 147–213.

    Article  CAS  Google Scholar 

  • Ando, W., and Takata, T. (1985) Singlet O2. Reaction Modes and Products. Part 2, in Photooxidation of Sulfur Compounds, Vol. in (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL., pp. 1–117.

    Google Scholar 

  • Arnason, J. T., Scaiano, J. C., Philogene, B. J. R., Morand, P., Werstiuk, N., and Lam, J. (1987) Thiophenes and Acetylenes: Phototoxic Agents to Herbivorous and Blood-Feeding Insects, in Light-activated Pesticides, ACS Symposium Ser., Vol. 339, (J. R. Heitz, and K. R. Downum, Eds.), American Chemical Society, Washington, DC., pp. 255–264.

    Chapter  Google Scholar 

  • Asveld, E. W. H., and Kellogg, R. M. (1980) Formation of 1,2-Dioxetanes and Probable Trapping of an Intermediate in the Reactions of some Enol Ethers with Singlet Oxygen. J. Am. Chem. Soc., 102, 3644–3646.

    Article  CAS  Google Scholar 

  • Aubry, J. M., Cazin, B., and Duprat, F. (1989) Chemical Sources of Singlet Oxygen. 3. Peroxidation of Water-Soluble Singlet Oxygen Carriers with the Hydrogen Peroxide-Molybdate System. J. Org. Chem., 54, 726–728.

    Article  CAS  Google Scholar 

  • Aubry, J. M., Rigaudy, J., Ferradini, C., and Pucheault, J. (1981) A Search for Singlet Oxygen in the Disproportionation of Superoxide Anion. J. Am. Chem. Soc., 103, 4965–4966.

    Article  CAS  Google Scholar 

  • Bartlett, P. D., and Schaap, A. P. (1970) Stereospecific Formation of 1,2-Dioxetanes from cis and trans-Diethoxyethylenes by Singlet Oxygen. J. Am. Chem. Soc., 92, 3223–3225.

    Article  CAS  Google Scholar 

  • Baumstark, A. L. (1985) The 1,2-Dioxetane Ring System: Preparation, Thermolysis, and Insertion Reactions, in Singlet O2, Vol. II (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 1–35.

    Google Scholar 

  • Bensasson, R., and Rougée, M. (1986) Détermination Des Constantes de Vitesse de Désactivation de l’Oxygène Singulet en Présence de Biomolécules. Comptes Rend. Acad. Sci. (Paris), 302, 1223–1226.

    Google Scholar 

  • Bloodworth, A. J., and Eggelte, H. J. (1985) Endoperoxides, in Singlet O2, Vol. II (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 93–203.

    Google Scholar 

  • Böhme, K., and Brauer, H.-D. (1992) Generation of Singlet Oxygen from Hydrogen Peroxide Disproportionation Catalyzed by Molybdate Ions. Inorg. Chem., 31, 3468–3471.

    Article  Google Scholar 

  • Calvert, J. G., and Pitts Jr., J. N. (1966) Photochemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Chou, P.-T., Martinez, M. L., and Studer, S. L. (1990) Direct Spectroscopic Measurements of 1Δ g O 2 Production by Thermodecomposition and UV (266 nm) Photolysis of Benzaldehyde Hydrotrioxide. Chem. Phys. Lett, 174, 46–52.

    Article  CAS  Google Scholar 

  • Clennan, E. L. (1991) Synthetic and Mechanistic Aspects of 1,3-Diene Photooxidation. Tetrahedron, 47, 1343–1382.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and L’Esperance, R. P. (1983) The Addition of Singlet Oxygen to Alkoxy and Trimethylsiloxybutadienes. The Synthesis of Novel New Peroxides. Tetrahedron Lett, 24, 4291–4295.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and L’Esperance, R. P. (1985) The Unusual Reactions of Singlet Oxygen with Isomeric Dienes. A 2s + 2 a Cycloaddition. J. Am. Chem. Soc., 107, 5178–5182.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and Foote, C. S. (1992) Endoperoxides, in Organic Peroxides, (W. Ando, Ed.), John Wiley & Sons, Chichester, England, pp. 225–318.

    Google Scholar 

  • Clennan, E. L., and Mehrsheik-Mohammadi, M. E. (1984) Mechanism of Endoperoxide Formation. 3. Utilization of the Young and Carlsson Kinetic Techniques. J. Am. Chem. Soc., 106, 7112–7118.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and Nagraba, K. (1988) The Addition Of Singlet Oxygen to Alkoxy Substituted Dienes. The Mechanism of the Singlet Oxygen 1,2-Cycloaddition Reaction. J. Am. Chem. Soc., 110, 4312–4318.

    Article  CAS  Google Scholar 

  • Clennan, E. L., Noe, L. J., and T. W. (1990) Hydrazines: New Charge-Transfer Physical Quenchers of Singlet Oxygen. J. Am. Chem. Soc., 112, 5080–5085.

    Article  CAS  Google Scholar 

  • Clennan, E. L., Oolman, K. A., Yang, K., and Wang, D.-X. (1991a) Effect of Temperature on Sulfide Photooxidations. Evidence for a Reversibly Formed Exciplex? J. Org. Chem., 56, 4286–4289.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and Yang, K. (1990) 17O Isotopic Tracer Evidence for the Formation of a Sulfurane Intermediate during Sulfide Photooxidation. J. Am. Chem. Soc., 112, 4044–4046.

    Article  CAS  Google Scholar 

  • Clennan, E. L., and Yang, K. (1992) Remote Participation During Photooxidation at Sulfur. Evidence for Sulfurane Intermediates. J. Org. Chem., 57, 4477–4487.

    Article  CAS  Google Scholar 

  • Clennan, E. L., Yang, K., and Chen, X. (1991b) Kinetic Implications of Remote Participation During Photooxidation at Sulfur. J. Org. Chem., 56, 5251–5252.

    Article  CAS  Google Scholar 

  • Coughlin, D. J., and Salomon, R. G. (1977) Synthesis and Thermal Reactivity of Some 2,3-Dioxobicyclo[2.2.1]heptane Models of Prostaglandin Endo-peroxides. J. Am. Chem. Soc., 99, 655–657.

    Article  CAS  Google Scholar 

  • Dougherty, T. J. (1984) An Overview of the Status of Photoradiation Therapy, in Porphyrin Localization and Treatment of Tumors. Progress in Clinical and Biological Research, Vol. 170 (D. R. Doiron and C. J. Gomer, Eds.), Alan R. Liss, New York.

    Google Scholar 

  • Eisenberg, W. C., Anand, J., Wang, S., and Stevenson, R. J. (1992) Oxidation of Phosphatidylcholine Membranes in Singlet Oxygen Generated in the Gas Phase. Photochem. Photobiol., 56, 441–445.

    Article  CAS  Google Scholar 

  • Fahrenholtz, S. R., Doleiden, F. H., Trozzolo, A. M., and Lamola, A. A. (1974) On the Quenching of Singlet Oxygen by Tocopherol. Photochem. Photobiol., 20, 505–509.

    Article  CAS  Google Scholar 

  • Foote, C. S. (1972) Chemical Reactivity of Polycyclic Aromatic Hydrocarbons and Aza-Arenes, in Particulate Polycyclic Organic Matter, National Academy of Sciences, Washington, DC., pp. 63–81.

    Google Scholar 

  • Foote, C. S. (1976) Photosensitized Oxidation and Singlet Oxygen: Consequences in Biological Systems, in Free Radicals in Biology, Vol. 2 (W. A. Pryor, Ed.), Academic Press, New York, pp. 85–133.

    Google Scholar 

  • Foote, C. S. (1979a) Detection of Singlet Oxygen in Complex Systems: A Critique, in Biochemical and Clinical Aspects of Oxygen (W. S. Caughey, Ed.), Academic Press, New York, pp. 603–626.

    Google Scholar 

  • Foote, C. S. (1979b) Quenching of Singlet Oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, Eds.), Academic Press, New York, pp. 139–171.

    Google Scholar 

  • Foote, C. S. (1987) Type I and Type II Mechanisms in Photodynamic Action, in Light-Activated Pesticides, (J. R. Heitz and K. R. Downum, Eds.), ACS Symposium Series 339, American Chemical Society, Washington, DC., pp. 22–38.

    Chapter  Google Scholar 

  • Foote, C. S., Chang, Y. C., and Denny, R. W. (1970) Chemistry of Singlet Oxygen. X. Carotenoid Quenching Parallels Biological Protection. J. Am. Chem. Soc., 92, 5216–5218.

    Article  CAS  Google Scholar 

  • Foote, C. S., and Denny, R. W. (1968) Chemistry of Singlet Oxygen. VII. Quenching by β-Carotene. J. Am. Chem. Soc., 90, 6233–6235.

    Article  CAS  Google Scholar 

  • Foote, C. S., and Uhde, G. (1971) 2-Methoxy-5-hydroperoxy-2,5-dimethyldi-hydrofuran, in Organic Photochemical Syntheses (R. Srinivasan, Ed.), John Wiley & Sons, New York, pp. 70–72.

    Google Scholar 

  • Foote, C. S., Wexler, S., Ando, W., and Higgins, R. (1968) Chemistry of Singlet Oxygen. IV. Oxygenations with Hypochlorite-Hydrogen Peroxide. J. Am. Chem. Soc., 90, 975–981.

    Article  CAS  Google Scholar 

  • Foote, C. S., Dzakpasu, A. A., and Lin, W.-P. (1975) Chemistry of Singlet Oxygen. XX. Mechanism of the Sensitized Photooxidation of Enamines. Tetrahedron Lett, 1247–1250.

    Google Scholar 

  • Foote, C. S., Fujimoto, T. T., and Chang, Y. C. (1972) Chemistry of Singlet Oxygen. XV. Irrelevance of Azide Trapping to Mechanism of the Ene Reaction. Tetrahedron Lett, 45–49.

    Google Scholar 

  • Foote, C. S., Ching, T.-Y., and Geller, G. G. (1974) Chemistry of Singlet Oxygen. XVDI. Rates of Reaction and Quenching of α-Tocopherol and Singlet Oxygen. Photochem. Photobiol., 20, 511–514.

    Article  CAS  Google Scholar 

  • Foote, C. S., Shook, F. C., and Abakerli, R. A. (1984) Characterization of Singlet Oxygen, in Methods in Enzymology, 105 (L. Packer, Ed.), Oxygen Radicals in Biological Systems, Academic Press, New York, pp. 36–47.

    Google Scholar 

  • Frimer, A. A. (1979) The Reactions of Singlet Oxygen with Olefins: The Question of Mechanism. Chem. Rev., 79, 359–387.

    Article  CAS  Google Scholar 

  • Frimer, A. A. (Ed.) (1985) Singlet O2, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Frimer, A. A., and Stephenson, L. M. (1985) The Singlet Oxygen Ene Reaction, in Singlet O2, Vol. II (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 68–91.

    Google Scholar 

  • Frimer, A. A., Bartlett, P. D., Böschung, A. E, and Jewett, J. G. (1977) Reaction of Singlet Oxygen with 4-Methyl-2,3-dihydro-γ-Pyrans. J. Am. Chem. Soc., 99, 7977–7986.

    Article  CAS  Google Scholar 

  • Fu, Y., Krasnovsky Jr., A. A., and Foote, C. S. (1993) Singlet Oxygen Dimol-Sensitized Luminescence from Thermally Generated Singlet Oxygen. J. Am. Chem. Soc., 115, 10282–10285.

    Article  CAS  Google Scholar 

  • Girotti, A. W. (1992) Photosensitized Oxidation of Cholesterol in Biological Systems: Reaction, Pathways, Cytotoxic Effects and Defense Mechanisms. J. Photochem. Photobiol. B: Biol., 13, 105–118.

    Article  CAS  Google Scholar 

  • Gollnick, K., and Kuhn, H. J. (1979) Ene-Reactions with Singlet Oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, Eds.), Academic Press, New York, pp. 287–427.

    Google Scholar 

  • Gollnick, K., and Schenck, G. O. (1967) Oxygen as a Dienophile, in 1,4-Cycloaddition Reactions. The Diels Alder Reaction in Heterocyclic Synthesis, Vol. 8 (J. Hamer, Ed.), Academic Press, New York, pp. 255–344.

    Google Scholar 

  • Gorman, A. A., Hamblett, I., Lambert, C., Prescott, A. L., Rodgers, M. A. J., and Spence, H. M. (1987) Aromatic Ketone-Naphthalene Systems as Absolute Standards for the Triplet-Sensitized Formation of Singlet Oxygen, O2(1Δg), in Organic and Aqueous Media: a Time-Resolved Luminescence Study. J. Am. Chem. Soc., 109, 3091–3097.

    Article  CAS  Google Scholar 

  • Gorman, A. A., and Rodgers, M. A. J. (1989) Singlet Oxygen, in CRC Handbook of Organic Photochemistry, Vol. II (J. C. Scaiano, Ed.), CRC Press, Boca Raton, FL, pp. 229–247.

    Google Scholar 

  • Gu, C.-L., and Foote, C. S. (1982) Chemistry of Singlet Oxygen. 38. Temperature Effect on the Photooxidation of Sulfides. J. Am. Chem. Soc., 104, 6060–6063.

    Article  CAS  Google Scholar 

  • Harding, L. B., and Goddardm, W. A. (1980) The Mechanism of the Ene Reaction of Singlet Oxygen with Olefins. J. Am. Chem. Soc., 102, 439–449.

    Article  CAS  Google Scholar 

  • Heitz, J. R., and Downum, K. R. (Eds.) (1987) Light-Activated Pesticides, ACS Symposium Series 339, American Chemical Society, Washington, DC.

    Google Scholar 

  • Held, A. M., Halko, D. J., and Hurst, J. K. (1978) Mechanisms of Chlorine Oxidation of Hydrogen Peroxide. J. Am. Chem. Soc., 100, 5732–5740.

    Article  CAS  Google Scholar 

  • Henderson, B. W., and Dougherty, T. J. (1992) How Does Photodynamic Therapy Work? Photochem. Photobiol., 55, 145–157.

    Article  CAS  Google Scholar 

  • Howard, J. A., and Ingold, K. U. (1968) The Self-Reaction of sec-Butylperoxy Radicals. Confirmation of the Russell Mechanism. J. Am. Chem. Soc., 90, 1056–1058.

    Article  CAS  Google Scholar 

  • Hudson, J. B., Harris, L., and Towers, G. H. N. (1993) The Importance of Light in the Anti-HIV Effect of Hypericin. Antiviral Res., 20, 173–178.

    Article  CAS  Google Scholar 

  • Jefford, C. W., and Rimbault, C. G. (1978) Formation of 1,2-Dioxetanes and Probable Trapping of an Intermediate in the Reactions of Some Enol Ethers with Singlet Oxygen. J. Am. Chem. Soc., 102, 3644–3646.

    Google Scholar 

  • Jensen, F. (1992) Reaction of Organic Sulfides with Singlet Oxygen. A Theoretical Study Including Electron Correlation. J. Org. Chem., 57, 6478–6487.

    Article  CAS  Google Scholar 

  • Jones, I. T. N., and Bayes, K. D. (1973) Formation of O2(1Δg)by electronic Energy Transfer in Mixtures of NO2 and O2. J. Chem. Phys., 59, 3119–3124.

    Article  CAS  Google Scholar 

  • Kanofsky, J. R. (1988a) Red Chemiluminescence from Ram Seminal Vesicle Microsomes: Pitfalls in the Use of Spectrally Resolved Red Chemiluminescence as a Test for Singlet Oxygen in Biological Systems. Photochem. Photobiol., 47, 605–609.

    Article  CAS  Google Scholar 

  • Kanofsky, J. R. (1988b) Singlet Oxygen Production By Biological Systems. Chem.-Biol. Interactions, 70, 1–28.

    Article  Google Scholar 

  • Kearns, D. R. (1979) Solvent and Solvent Isotope Effects on the Lifetime of Singlet Oxygen, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, Eds.), Academic Press, New York, pp. 115–137.

    Google Scholar 

  • Kralic, I., El Mohsni, S., and Arvis, M. (1978) A General Method for the Identification of Primary Reactions in Sensitized Photooxygenations. Photochem. Photobiol., 27, 531–537.

    Article  Google Scholar 

  • Krasnovsky, A. A., Jr., and Foote, C. S. (1993) Time-Resolved Measurements of Singlet Oxygen Dimol-Sensitized Luminescence. J. Am. Own. Soc., 115, 6013–6016.

    Article  CAS  Google Scholar 

  • Krasnovsky, A. A., Jr., and Neverov, K. V. (1990) Photoinduced Dimol Luminescence of Singlet Molecular Oxygen in Solutions of Photosensitizers. Chem. Phys. Lett, 167, 591–596.

    Article  Google Scholar 

  • Krishna, C. M., Lion, Y., and Riesz, P. (1987) A Study of 1O2 Production by Immobilized Sensitizer Outside the Solution. Measurement of 1O2 Generation. Photochem. Photobiol., 45, 1–6.

    Article  CAS  Google Scholar 

  • Kwon, B. M., and Foote, C. S. (1988) Chemistry of Singlet Oxygen. 50. Hydroperoxide Intermediates in the Photooxygenation of Ascorbic Acid. J. Am. Chem. Soc., 110, 6852–6853.

    Google Scholar 

  • Leisman, G. B., and Daub, M. E. (1992) Singlet Oxygen Yields, Optical Properties, and Phototoxicity of Reduced Derivatives of the Photosensitizer Cercosporin. Photochem. Photobiol., 55, 373–379.

    Article  CAS  Google Scholar 

  • Liang, J.-J., Gu, C.-L., Kacher, M. L., and Foote, C. S. (1983) Chemistry of Singlet Oxygen. 45. Mechanism of the Photooxidation of Sulfides. J. Am. Chem. Soc., 105, 4717–4721.

    Article  CAS  Google Scholar 

  • Lightner, D. A., and McDonagh, A. F. (1984) Molecular Mechanisms of Phototherapy for Neonatal Jaundice. Acc. Chem. Res., 17, 417–424.

    Article  CAS  Google Scholar 

  • Manring, L. E., and Foote, C. S. (1982) Chemistry of Singlet Oxygen. 37. One-electron Oxidation of Tetramethylphenylenediamine by Singlet Oxygen in Water. J. Phys. Chem., 86, 1257–1259.

    Article  CAS  Google Scholar 

  • Matsumoto, M., Dobashi, S., and Kondo, K. (1977) The Sensitized Photooxygenation of 2-Vinylbenzofurans. Bull. Chem. Soc. Jpn., 50, 3026–3028.

    Article  CAS  Google Scholar 

  • Mayeno, A. N., Curran, A. J., Roberts, R. L., and Foote, C. S. (1989) Eosinophils Preferentially Use Bromide to Generate Halogenating Agents. J. Biol. Chem., 264, 5660–5668.

    CAS  Google Scholar 

  • McCapra, F., and Beheshti, I. (1977) Reaction of Singlet Oxygen with Hindered Olefins: Evidence for a Perepoxide Intermediate. J. Chem. Soc. Chem. Commun., 517–518.

    Google Scholar 

  • Meruelo, D., Lavie, G., and Lavie, D. (1988) Therapeutic Agents with Dramatic Antiretroviral Activity and Little Toxicity at Effective Doses: Aromatic Polycyclic Diones Hypericin and Pseudohypericin. Proc. Nat. Acad. Sci. USA., 85, 5230–5234.

    Article  CAS  Google Scholar 

  • Midden, W. R., and Wang, S. Y (1983) Singlet Oxygen Generation for Solution Kinetics: Clean and Simple. J. Am. Chem. Soc., 105, 4129–4135.

    Article  CAS  Google Scholar 

  • Monroe, B. (1985) Singlet Oxygen in Solution: Lifetimes and Reaction Rate Constants, in Singlet Oxygen, Vol. I (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 177–224.

    Google Scholar 

  • Murray, R. W., and Kaplan, M. L. (1968) Singlet Oxygen Sources in Ozone Chemistry. J. Am. Chem. Soc., 90, 537.

    Article  CAS  Google Scholar 

  • Nahm, K., Li, Y., Evanseck, J. D., Houk, K. N., and Foote, C. S. (1993) Structures and Energies of Intermediates in the Reactions of Singlet Oxygen with Organic Phosphines and Sulfides. J. Am. Chem. Soc., 115, 4879–4884.

    Article  CAS  Google Scholar 

  • Niu, Q., and Mendenhall, G. D. (1990) Structural Effects on the Yields of Singlet Molecular Oxygen (1ΔgO2) from Alkylperoxyl Radical Recombination. J. Am. Chem. Soc., 112, 1656–1657.

    Article  CAS  Google Scholar 

  • Niu, Q. J., and Foote, C. S. (1992) Singlet Molecular Oxygen Generation from the Decomposition of Sodium Peroxotungstate and Molybdate. Inorg. Chem., 31, 3472–3476.

    Article  CAS  Google Scholar 

  • Ouannès, C., and Wilson, T. (1968) Quenching of Singlet Oxygen by Tertiary Aliphatic Amines. Effect of DABCO. J. Am. Chem. Soc., 90, 6527–6528.

    Article  Google Scholar 

  • Parker, C. A. (1968) Photoluminescence of Solutions. With Applications to Photochemistry and Analytical Chemistry, Elsevier, New York.

    Google Scholar 

  • Peters, G., and Rodgers, M. A. J. (1981) Single Electron-Transfer from NADH Analogues to Singlet Oxygen. Biochem. Biophys. Acta, 637, 43–52.

    Article  CAS  Google Scholar 

  • Pitts, J. N. J. (1970) Singlet Molecular Oxygen and the Photochemistry of Urban Atmospheres. Ann. NY Acad. Sci., 171, 239–272.

    Article  CAS  Google Scholar 

  • Posner, G. H., Webb, K. S., Nelson, W. M., Kishimoto, T., and Seliger, H. H. (1989) A New Oxidizing Reagent: Triethylsilyl Hydrotrioxide. J. Org. Chem., 54, 3252–3254.

    Article  CAS  Google Scholar 

  • Rigaudy, J. (1977) Photooxidation of Benzylidene Cyclobutane 1. Tetrahedron, 33, 53–56.

    Article  CAS  Google Scholar 

  • Ryang, H.-S., and Foote, C. S. (1979) Chemistry of Singlet Oxygen. XXXI. Low Temperature NMR Studies of Dye-Sensitized Photooxygenation of Imidazoles: Direct Observation of Unstable 2,5-Endoperoxide Intermediates. J. Am. Chem. Soc., 101, 6683–6687.

    Article  CAS  Google Scholar 

  • Saito, I., Matsugo, S., and Matsuura, T. (1979) 1,2-Dioxetane Formation in an Indole System. J. Am. Chem. Soc., 101, 4757–4759.

    Article  CAS  Google Scholar 

  • Saito, I., Matsuura, T., and Inoue, K. (1983) Formation of Superoxide Ion via One-electron Transfer from Electron Donors to Singlet Oxygen. J. Am. Chem. Soc., 105, 3200–3206.

    Article  CAS  Google Scholar 

  • Scaiano, J. C., Redmond, R. W., Mehta, B. et al. (1990) Efficiency of the Photoprocesses Leading to Singlet Oxygen (aAg) Generation by α-Terthienyl: Optical Absorption, Optoacoustic Calorimetry and Infrared Luminescence Studies. Photochem. Photobiol., 52, 655–659.

    Article  CAS  Google Scholar 

  • Schaap, A. P., Thayer, A. L., Faler, G. R., Goda, K., and Kimura, T. (1974) Singlet Molecular Oxygen and Superoxide Dismutase. J. Am. Chem. Soc., 96, 4025–4026.

    Article  CAS  Google Scholar 

  • Schenck, G. O., and Krauch, C. H. (1962) Zur photosensibilisierten O2-Übertragung auf Schwefelverbindungen. Neuer Weg zu Sulfoxyden. Angew. Chem., 74, 510.

    Article  Google Scholar 

  • Schmidt, R., and Afshari, E. (1990) Effect of Solvent on the Phosphorescence Rate Constant of Singlet Molecular Oxygen (1Δg). J. Phys. Chem., 94, 4377–4378.

    Article  CAS  Google Scholar 

  • Sheu, C., and Foote, C. S. (1993) Endoperoxide Formation in a Guanosine Derivative. J. Am. Chem. Soc., 115, 10446–10447.

    Article  CAS  Google Scholar 

  • Sheu, C., Foote, C. S., and Gu, C.-L. (1992) Photooxidation of 1,5-Dithiacy-clooctane. A Novel C—S Bond Cleavage. J. Am. Chem. Soc., 114, 3015–3021.

    Article  CAS  Google Scholar 

  • Singh, A. (1982) Chemical and Biochemical Aspects of Superoxide Radicals and Related Species of Activated Oxygen. Can. J. Physiol. Pharmacol, 60, 1330–1345.

    Article  CAS  Google Scholar 

  • Smith, W. F., Jr. (1974) Kinetic Evidence for Both Quenching and Reaction of Singlet Oxygen with Triethylamine in Pyridine Solution. J. Am. Chem. Soc., 94, 186–190.

    Article  Google Scholar 

  • Smith, L. L., and Teng, J. I. (1974) Sterol Metabolism. XXIX. On the Mechanism of Microsomal Lipid Peroxidation in Rat Liver. J. Am. Chem. Soc., 96, 2640–2641.

    Article  CAS  Google Scholar 

  • Spikes, J. D. (1984) Photobiology of Porphyrins, Progress in Clinical and Biological Research, in Porphyrin Localization and Treatment of Tumors, Vol. 170 (D. R. Doiron and C. J. Gomer, Eds.), Alan R. Liss, New York, pp. 19–40.

    Google Scholar 

  • Spikes, J. D., Bommer, J. C., and Foote, C. S. (1993) Photophysical and Photosensitizing Properties of Purpurin-18, a Hydrophobic Clorin. in preparation.

    Google Scholar 

  • Stary, F. E., Emge, D. E., and Murray, R. W. (1974) Hydrotrioxides. Formation and Kinetics of Decomposition. J. Am. Chem. Soc., 96, 5671.

    Article  CAS  Google Scholar 

  • Steinbeck, M. J., Khan, A. U., and Karnovsky, M. J. (1992) Intracellular Singlet Oxygen Generation by Phagocytosing Neutrophils in Response to Particles Coated with a Chemical Trap. J. Biol. Chem., 267, 13425–13433.

    CAS  Google Scholar 

  • Steinbeck, M. J., Khan, A. U., and Karnovsky, M. J. (1993) Extracellular Production of Singlet Oxygen by Stimulated Macrophages Quantified Using 9,10-Diphenylanthracene and Perylene in a Polystyrene Film. J. Biol. Chem., 268, 15649–15654.

    CAS  Google Scholar 

  • Stephenson, L. M., and McClure, D. E. (1973) Mechanisms in Phosphite Ozonide Decomposition to Phosphate Esters and Singlet Oxygen. J. Am. Chem. Soc., 95, 3074–3076.

    Article  CAS  Google Scholar 

  • Stevens, B., Small, R. D., and Perez, S. R. (1974) The Photoperoxidation of Unsaturated Organic Molecules. XIII. O21Δg Quenching by α-Tocopherol. Photochem. Photobiol., 20, 515–518.

    Article  CAS  Google Scholar 

  • Straight, R. C., and Spikes, J. D. (1985) Photosensitized Oxidation of Biomolecules, in Singlet O2, Vol. IV (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 85–144.

    Google Scholar 

  • Sysak, P. K., Foote, C. S., and Ching, T.-Y (1977) Chemistry of Singlet Oxygen. XXV. Photooxygenation of Methionine. Photochem. Photobiol., 26, 19–27.

    Article  CAS  Google Scholar 

  • Thomas, J. P., and Girotti, A. W. (1988) Photooxidation of Cell Membranes in the Presence of Hematoporphyrin Derivative: Reactivity of Phospholipid and Cholesterol Hydroperoxides with Glutathione Peroxidase. Biochim. Biophys. Acta, 962, 297–307.

    CAS  Google Scholar 

  • Thomas, M. J., and Pryor, W. A. (1981) A New Procedure for Detecting the Participation of Singlet Oxygen in Biological Peroxidation, in Oxygen and Oxy Radicals in Chemistry and Biology (M. A. J. Rodgers and E. L. Powers, Eds.), Academic Press, New York, pp. 761–763.

    Google Scholar 

  • Towers, G. H. N., and Champagne, D. E. (1987) Fungicidal Activity of Naturally-Occurring Photosensitizers, in Light-activated Pesticides (J. R. Heitz and K. R. Downum, Eds.), ACS Symposium Ser. 339, American Chemical Society, Washington, DC., pp. 231–240.

    Chapter  Google Scholar 

  • Turro, N. J., Chow, M.-F., and Rigaudy, J. (1981) Mechanism of Thermolysis of Endoperoxides of Aromatic Compounds. Activation Parameters, Magnetic Field, and Magnetic Isotope Effects. J. Am. Chem. Soc., 103, 7218–7224.

    Article  CAS  Google Scholar 

  • Vever-Bizet, C., Dellinger, M., Brault, D., Rougée, M., and Bensasson, R. V. (1989) Singlet Molecular Oxygen Quenching by Saturated and Unsaturated Fatty-Acids and by Cholesterol. Photochem. Photobiol., 50, 321–325.

    Article  CAS  Google Scholar 

  • Wasserman, H. H., and Murray, R. W. (Eds.) (1979) Singlet Oxygen, Academic Press, New York.

    Google Scholar 

  • Watanabe, Y., Kuriki, N., Ishiguro, K., and Sawaki, Y. (1991) Persulfoxide and Thiadioxirane Intermediates in the Reaction of Sulfides and Singlet Oxygen. J. Am. Chem. Soc., 113, 2677–2682.

    Article  CAS  Google Scholar 

  • Wiles, D. M. (1976) Stabilization of Polymers against Singlet Oxygen, in Singlet Oxygen, Reactions With Organic Compounds and Polymers (B. Ranby and J. F. Rabek, Eds.), John Wiley & Sons, London, pp. 320–328.

    Google Scholar 

  • Wilkinson, F., and Brummer, J. G. (1981) Rate Constants for the Decay and Reactions of the Lowest Electronically Excited State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data, 10, 809–1000.

    Article  CAS  Google Scholar 

  • Wilkinson, F., Helman, W. P., and Ross, A. B. (1993) Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data, 22, 113–262.

    Article  CAS  Google Scholar 

  • Zaklika, K. A., Kaskar, B., and Schaap, A. P. (1980) Mechanism of Photooxygenation. 1. Substituent Effects on the [2+2] Cycloaddition of Singlet Oxygen to Vinyl Ethers. J. Am. Chem. Soc., 102, 386–389.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Foote, C.S., Clennan, E.L. (1995). Properties and Reactions of Singlet Dioxygen. In: Foote, C.S., Valentine, J.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH Series), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0874-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0874-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0371-8

  • Online ISBN: 978-94-007-0874-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics