Skip to main content

Overview of the Energetics and Reactivity of Oxygen

  • Chapter
Active Oxygen in Chemistry

Abstract

Oxygen, the most abundant element in the Earth’s crust (approximately 49.5% by weight), is believed to have been discovered first around 1774, by Carl Wilhelm Scheele, a Swedish pharmacist, who observed that heating silver carbonate produced a gas which would support respiration. Publication of Scheele’s manuscript on this discovery was delayed, however (Scheele, 1777), allowing Joseph Priestley, an English clergyman who made similar observations upon heating mercuric oxide, to publish his findings first (Priestley, 1776). Regardless of the true chronology of the discovery of this element, it was not until 1787 that it was given the name “oxygen”, meaning acid-former, by Antoine Laurent Lavoisier, who believed at the time that all acids contained oxygen (Jaffe, 1949). Since those early studies, a wealth of information on the chemistry and biochemistry of oxygen has been discovered. It is now known that oxygen can form compounds with all of the elements except helium, neon, argon, and probably krypton. Oxygen, in the form of dioxygen, is widely used in industry in the production of steel and other metals, the manufacture of chemicals, rocket propulsion, and the production of stone- and glass-containing products (Francis, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, W. (1992) Organic Peroxides, John Wiley & Sons, New York.

    Google Scholar 

  • Bard, A. J., Parsons, R., and Jordon, J. (1985) Standard Potentials in Aqueous Solution, Marcel Dekker, New York.

    Google Scholar 

  • Bartlett, N., and Lohmann, D. H. (1962) Fluorides of the Noble Metals. Part II. Dioxygenyl Hexafluoroplatinate, O2+ [PtF6]-. J. Chem. Soc., 5253–5261.

    Google Scholar 

  • Bielski, B. H. J. (1978) Reevaluation of the Spectral and Kinetic Properties of HO2 and O2” Free Radicals. Photochem. Photobiol., 28, 645–653.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M., DoNohue, J., Kennard, O., and Whiffen, D. H. (1958) Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society, London.

    Google Scholar 

  • Burford, N., Passmore, J., and Sanders, J. C. P. (1988) Prom Atoms to Polymers: Isoelectronic Analogies, VCH, New York.

    Google Scholar 

  • Cerkovnik, J., and Plesnicar, B. (1993) Characterization and Reactivity of Hydrogen Trioxide (HOOOH): A Reactive Intermediate Formed in the Low Temperature Ozonation of 2-Ethylanthrahydroquinone. J. Am. Chem. Soc., 115, 12169–12170.

    Article  CAS  Google Scholar 

  • Cotton, A. F., and Wilkinson, G. (1988) Advanced Inorganic Chemistry, Vol. 5, John Wiley and Sons, New York.

    Google Scholar 

  • Crampton, C. A., Jaber, G., Jones, R., Leaver, J. P., and Schelle, S. (1977) The Manufacture, Properties and Uses of Hydrogen Peroxide, in The Modern Inorganic Chemicals (R. Thompson, Ed.), The Chemical Society, London.

    Google Scholar 

  • Criegee, R. (1962) Peroxide Pathways in Ozone Reactions, in Peroxide Reaction Mechanisms (J. O. Edwards, Ed.), Interscience Publishers, New York.

    Google Scholar 

  • Cvetanovic, R. J. (1987) Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(3P) with Unsaturated Hydrocarbons. J. Phys. Chem. Ref. Data, 16, 261–326.

    Article  CAS  Google Scholar 

  • Davies, A. G. (1961) Organic Peroxides. Butterworth, London.

    Google Scholar 

  • Edwards, A. J., Falconer, W. E., Griffiths, J. E., Sunder, W. A., and Vasile, M. J. (1974) Syntheses and Some Properties of Dioxygenyl Fluorometallate Salts. J. Chem. Soc. Dalton Trans., 1129–1133.

    Google Scholar 

  • Francis, A. W., Sr. (Ed.) (1992) Oxygen, in McGraw-Hill Encyclopedia of Science & Technology, Vol. 7, McGraw-Hill, New York, pp. 632–635.

    Google Scholar 

  • George, P. (1965) The Fitness of Oxygen, in Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, Ed.), John Wiley & Sons, New York, pp. 3–36.

    Google Scholar 

  • Glasgow, L. C. (1975) Ozone Equipment and Instrumentation, in Ozone Chemistry and Technology (J. S. Murphy and J. R. Orr, Ed.), Franklin Institute Press, Philadelphia, 133–161.

    Google Scholar 

  • Huber, K. P., and Herzberg, G. (1979) Molecular Spectra and Molecular Structure Constants of Diatomic Molecules, Van Nostrand, New York.

    Google Scholar 

  • Hudlicky, M. (1990) Oxidations in Organic Chemistry, American Chemical Society, Washington, DC.

    Google Scholar 

  • Jaffe, B. (1949) Crucibles: The Story of Chemistry, 3rd ed., Hutchinson’s, London.

    Google Scholar 

  • Johnson, R. M., and Siddiqi, I. W. (1970) Determination of Organic Peroxides, Pergamon Press, New York.

    Google Scholar 

  • Kasha, M. (1985) Singlet Oxygen Electronic Structure and Energy Transfer, in Singlet O 2 (A. A. Frimer, Ed.), CRC Press, Boca Raton, FL, pp. 1–11.

    Google Scholar 

  • Koppenol, W. H. (1993) The Centennial of the Fenton Reaction. Free Radicals Biol Med., 15, 645–651.

    Article  CAS  Google Scholar 

  • Lin, M. C. (1980) Dynamics of Oxygen Atom Reactions, in Potential Energy Surfaces (K. P. Lawley, Ed.), John Wiley & Sons, Chichester, pp. 113–165.

    Google Scholar 

  • Margitan, J. J. (1983) Kinetics of the Reaction O + CIO → Cl + O2. J. Am. Chem. Soc., 88, 3638–3643.

    Google Scholar 

  • McMillen, D. F., and Golden, D. M. (1982) Hydrocarbon Bond Dissociation Energies. Ann. Rev. Phys. Chem., 33, 493–532.

    Article  CAS  Google Scholar 

  • Moore, C. E. (1970) Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Natl. Stand. Ref. Data Ser.Natl. Bur. Stand., 34.

    Google Scholar 

  • Patai, S. (1983) The Chemistry of Peroxides, John Wiley & Sons, New York.

    Google Scholar 

  • Pedley, J. B., Naylor, R. D., and Kirby, S. P. (1986) Thermochemical Data of Organic Compounds, 2nd ed., Chapman & Hall, New York.

    Book  Google Scholar 

  • Petrocelli, A. W., and Kraus, D. L. (1963) The Inorganic Superoxides. J. Chem. Ed., 40, 146–149.

    Article  CAS  Google Scholar 

  • Priestley, J. (1776) Experiments and Observations on Different Kinds of Airs, J. Johnson, London.

    Google Scholar 

  • Sawyer, D. T. (1991) Oxygen Chemistry, Oxford University Press, New York.

    Google Scholar 

  • Sawyer, D. T., Chiericato, G., Jr., Angelis, C. T., Nanni, E. J., Jr., and Tsushiya, T. (1982) Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen. Anal. Chem., 54, 1720–1724.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., and Valentine, J. S. (1981) How Super Is Superoxide? Acc. Chem. Res., 14, 393–400.

    Article  CAS  Google Scholar 

  • Scheele, C. W. (1777) Chemische Abhandlung von der Luft und Feuer.

    Google Scholar 

  • Slayden, W., and Liebman, J. F. (1993) The Chemistry of Hydroxyl Ether and Peroxide Groups, John Wiley & Sons, New York.

    Google Scholar 

  • Staschewski, D. (1974) The Stable Isotopes of Oxygen in Research and Technical Applications. Angew. Chem. Ind. Ed., 13, 357–370.

    Article  Google Scholar 

  • Swern, D. (1981) Organic Peroxides, Robert E. Krieger Publishing Company, Inc., Malabar, Florida.

    Google Scholar 

  • Valentine, J. S., Miksztal, A. R., and Sawyer, D. T. (1984) Methods for the Study of Superoxide Chemistry in Nonaqueous Solutions. Methods Enzymol, 105, 71–81.

    Article  CAS  Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L. (1982) The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units. J. Phys. Chem. Ref. Data, 11, Suppl. 2.

    Google Scholar 

  • Yamazaki, H., and Cvetanovic, R. J. (1964) Collisional Deactivation of the Excited Singlet Oxygen Atoms and Their Insertion into the CH Bonds of Propane. J. Chem. Phys., 41, 3703–3710.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Ho, R.Y.N., Liebman, J.F., Valentine, J.S. (1995). Overview of the Energetics and Reactivity of Oxygen. In: Foote, C.S., Valentine, J.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH Series), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0874-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0874-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0371-8

  • Online ISBN: 978-94-007-0874-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics