Skip to main content

Fracture Characteristics of Layered and Nano-Particle Reinforced Si3N4

  • Chapter

Part of the book series: NATO ASI Series ((ASHT,volume 43))

Abstract

In recent 10–15 years several attempts have been made with the aim of improving the mechanical properties, mainly the flaw tolerance and reliability, of silicon nitride based structural ceramics. As a result, the mechanical and fracture properties were significantly improved. This happened due to a close cooperation of scientists in basic and applied research and due to a detailed study of the microstructure characteristics of silicon nitride based ceramics and the influence of processing steps on microstructure and mechanical properties of these materials as well. The main scientific approaches used for this purpose are the following ones, Fig. 1:

  • The flaw diminution approach — improving the strength characteristics (characteristic strength and Weibull modulus) by reducing the critical defect’s size, [1–5],

  • The flaw tolerance approach — improving the flaw tolerance by activating localized bridges behind the crack tip in the form of mechanisms as frictional and mechanical interlocking or pull out, [6–10],

  • Nano-particle dispersion strengthening — improving the strength values by incorporating nano-sized second phase particles into the matrix, [11–15],

  • The laminar structure approach — improving the structural reliability by designing laminar (layered) composites with a promoted crack deflection at the interlayer boundaries and utilizing compressive residual stresses arisen due to the different thermal expansions of the neighbouring layers, [16–20].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, A.G. (1982) Structural reliability, a processing-dependent phenomena, J.Am.Ceram.Soc. 65, 127.

    Article  Google Scholar 

  2. Quinn G.D. and Morrell R. (1991) Design data for engineering ceramics: A review of the flexure test, J.Am.Ceram. Soc., 74, 2037.

    Article  CAS  Google Scholar 

  3. Lange, F.F. (1989) Powder processing science and technology for increased reliability, J.Am.Ceram.Soc., 72, 3.

    Article  CAS  Google Scholar 

  4. Petzow G, Telle R. and Danzer, R. (1991) Microstructural defects and mechanical properties of high-performance ceramics, Mat.Characterization 26, 289.

    Article  CAS  Google Scholar 

  5. Dusza, J., Šajgalík, P. (1995) Fracture toughness nad strength testing of ceramic composites In: Handbook of advanced materials testing, Ed. N.P. Cheremisinoff, and P.N. Cheremisinoff, Marcel Dekker, Inc., N.York, Basel, Hong Kong, 399–436.

    Google Scholar 

  6. Evans, A.G. (1990) Perspective of the development of high toughness ceramics, J.Am.Ceram.Soc. 73, 187.

    Article  CAS  Google Scholar 

  7. Fett, T. and Munz D. (1991) Influence of initial crack size, specimen size and loading type on R-curves caused by bridging stresses, Int.J.Fracture, 49, R21.

    CAS  Google Scholar 

  8. Li Ch..W., and Yamanis, J. (1989) Super-tough silicon nitride with R-curve behavior, Ceram. Eng. Sci. Proc. 10, 632.

    Article  CAS  Google Scholar 

  9. Petzow, G. and Mücklich, F. (1996) Microstructure — fascinating variety in stringent rule, Prakt.Metallogr., 33, 64–82.

    CAS  Google Scholar 

  10. Šajgalík, P., Dusza, J., and Hoffmann, M.J., (1995) Relationship between microstructure, toughening mechanisms, and fracture toughness of reinforced silicon nitride ceramics, J.Am.Ceram.Soc., 78, 2619–24.

    Article  Google Scholar 

  11. Niihara, K. (1991) New design concept of structural ceramics — ceramic nano-composites, J.Ceram.Soc.Japan, 99, 974.

    Article  CAS  Google Scholar 

  12. Belossi, A., Monterde, F., Botti, S., and Martelli, S., (1997) Development and characterization of nanophase Si3N4 based ceramics, Mat.Sci.Forum, 235–238, 255–260.

    Article  Google Scholar 

  13. Niihara, K., Izaki, K., and Nakahira A. (1990) The silicon nitride- silicon carbide nanocomposites with high strength at elevated temperatures, J. Jpn.Soc. Powder Metall., 37, 352–356.

    Article  CAS  Google Scholar 

  14. Niihara, K., Hirano, T., Nakahira A., Ojima, K., Izaki, K. and Kawakami, T. (1989) High temperature performance of Si3N4-SiC composites from fine amorphous Si-N-C powder, In: Proc.of the Symp. on Structural Ceramics and Fracture Mechanics. Ed. M. Doyama, S. Somiya and R.P.H. Chang, Materials Research Society, Tokyo, Japan, 107–112.

    Google Scholar 

  15. Dusza, J., Šajgalík, P. and Reece, M. (1993) Characterization of Si3Ne+SiC nano composites, 4th Euro-Ceramics, Ed.A.Bellosi, Gruppo Ed.Faenza, 4, 67–74.

    Google Scholar 

  16. Lii, D.-F., Huang J.-L., and Chou F.-Ch. (1996) Mechanical behaviour of Si3N4-SiC/Si3N4-Si3N4 layered composites, J. of the Ceram. Soc. of Japan, 104, 699–704.

    Article  CAS  Google Scholar 

  17. Šajgalík, P., Lenčéš, Z., and Dusza, J. (1996) Layered Si3N4 composites with enhanced room temperature properties, J.Mater.Sci., 31, 4837–4842.

    Article  Google Scholar 

  18. Clegg, W.J., Jendall, K., Alford, N.McN., Button, T.W., and Birchall, J.D. (1990), A simple way to make tough ceramics, Nature (London), 347, 455–457.

    Article  CAS  Google Scholar 

  19. Dusza, J. and Šajgalík, P. (1996) Strength and reliability improvement in Si3N4 ceramic materials, In: Proc. of Int. Conf.Deformation and Fracture in Structural PM Materials, Ed. Parilák L., Danninger H., Dusza J., Weiss 2, 61–73.

    Google Scholar 

  20. Dusza, J., Šajgalík, P., Rudnayová, E., Hvizdos, P., and Lenčéš, (1996) Fracture Characterization of silicon nitride based layered composites, Fracture Mechanics of Ceramics, 12, Ed. Brandt R.C., Hasselman D.P.H., Munz D., Sakai M., and Sevchenko U.Ya., 383–389.

    Chapter  Google Scholar 

  21. Niihara, K., Suganuma, K., Nakahira, A., and Izaki, K. (1990) Interfaces in Si3N4-SiC nano-composite, J.Mater.Sci.Lett., 9, 598.

    Article  CAS  Google Scholar 

  22. Pezzotti, G. and Sakai, M. (1994). Effect of a silicon carbide “nano dispersion” on the mechanical properties of silicon nitride, J.Am.Ceram.Soc. 77, 3039–3041

    Article  Google Scholar 

  23. Pezotti, G., Nishida, T., Sakai, M. (1995) Physical limitation of the inherent toughness and strength in ceramic-ceramic and ceramic-metal nanocomposites, J.Ceram.Soc., Japan, 103, 901.

    Article  Google Scholar 

  24. Hammer, M.P., Chan, H.M., and Miller, G.A. (1992) Unique oportunities for microstructural engineering with duplex and laminar ceramic composites, J.Am.Ceram.Soc., 75, 1715–1728

    Article  Google Scholar 

  25. Russo, C.J., Harmer, M.P., Charz, H.M., and Miller, G.A. (1991) Design of a laminated ceramic composite for improved strength and toughness, 93th Ann. Meeting of the Amer.Ceram.Soc., Cincinnati, Ceram. Matrix Comp. Symp., Paper No. 110-SV I.-91).

    Google Scholar 

  26. Marshall, D.B., Ratio J.T., and Lange, F.F. (1991) Enhanced fracture toughness in layered microcomposites of Ce-ZrO2 and A12O3, J.Amer.Ceram.Soc., 74, 2979–87.

    Article  CAS  Google Scholar 

  27. Becher, P, (1991) Microstructural design of toughened ceramics, J. Amer.Ceram.Soc., 74, 255.

    Article  CAS  Google Scholar 

  28. Lawn B.R., (1993) Fracture of brittle solids, Cambridge University Press, London.

    Book  Google Scholar 

  29. Sakai, M. (1991) Fracture mechanics and mechanisms of fiber-reinforced brittle matrix composites, J.Ceram.Soc., Japan, 99, 983.

    Article  CAS  Google Scholar 

  30. Dugdale, D.S. (1960) J.Mech.Phys.Solids, 8, 100–105.

    Article  Google Scholar 

  31. Barenblatt, G.I. (1962) The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Advances in Applied Mechanics, Ed.by H.L. Dryden and T. von Karman, Academic Press, New York, 55–129.

    Google Scholar 

  32. Dreier, G., Elssner, G., Schmauder, S., and Suga, T. (1994) Determination of residual stresses in bimaterials, J.Mater.Sci., 29, 1441–1448.

    Article  CAS  Google Scholar 

  33. Wei, G.C., Becher, P.F. (1984) Improvement in mechanical properties in SiC by the addition of TiC particles, J.Am.Ceram.Soc., 67, 571–574.

    Article  CAS  Google Scholar 

  34. Chartier, T., Merle, D., and Bessou, J.L. (1995) Laminar ceramic composites, J.Europ.Ceram. Soc., 15, 452.

    Google Scholar 

  35. Seher, M., Bill, J., Aldinger, F., and Riedel, R. (1994) Processing and properties of carbon containing silicon nitride ceramics derived from the pyrolysis of polyhydridochlorozilazanes, Key Eng.Mater., 84–91, 101–106.

    Google Scholar 

  36. Shetty, D.K., Wright, I.G., Mincer, P.M., and Claver, A.H. (1985) Indentation fracture of WC-Co cermets, J.Mater.Sci., 29, 1441.

    Google Scholar 

  37. Chantikul, P., Antsis, G.R., Lawn B.R. and.Marshall, D.(1981) J.Amer.Ceram.Soc., 63, 539–543.

    Article  Google Scholar 

  38. Šajgalík, P., Dusza, J., Hofer, F., Warbichler, P., Reece, M., Boden, G., and Kozánková, J. (1996) Structural development and properties of SiC-Si,N4 nano-micro composites, J.Mat.Sci.Letters, 15, 72–76.

    Article  Google Scholar 

  39. Pezzotti, G., Sergo, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., (1996) Residual stresses and apparent strengthening in ceramic-matrix nanocomposites, J.Ceram. Soc.of Japan, 104, 6, 497–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dusza, J., Šajgalík, P. (1998). Fracture Characteristics of Layered and Nano-Particle Reinforced Si3N4 . In: Haddad, Y.M. (eds) Advanced Multilayered and Fibre-Reinforced Composites. NATO ASI Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0868-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0868-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3940-1

  • Online ISBN: 978-94-007-0868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics