Skip to main content

Magnetic Resonance Imaging of Cardiac Function and Flow: Present and Future

  • Chapter
Advanced Imaging In Coronary Artery Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 202))

  • 122 Accesses

Abstract

Soon after its clinical introduction more than a decade ago, it became evident that magnetic resonance (MR) imaging of the heart and vascular system could not only provide excellent depiction of the anatomy but also of function and physiology. Images with high spatial resolution and tissue contrast were obtained without using ionizing radiation and offered a wide field-of-view without restrictions to image plane orientations. The tomographic approach allowed for accurate measurement in three dimensions of heart and vessel structures and quantification of blood flow, in a highly reproducible and operator-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sechtem U, Pflugfelder PW, White RD, et al. Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol. 1987; 148:239–46.

    PubMed  CAS  Google Scholar 

  2. Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 1993; 188:377–80.

    PubMed  CAS  Google Scholar 

  3. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology 1989; 171:841–5.

    PubMed  CAS  Google Scholar 

  4. Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization [published erratum. appears in Circulation 1994; 90-:1585] Circulation 1994; 89:740–52.

    CAS  Google Scholar 

  5. Firmin DN, Nayler GL, Kilner PJ, Longmore DB. The application of phase shifts in NMR for flow measurement. Magn Reson Med 1990; 14:230–41.

    Article  PubMed  CAS  Google Scholar 

  6. Van Rossum AC, Sprenger M. Magnetic resonance imaging and quantitation of blood flow. In: van der Wall EE, de Roos A, editors. Magnetic resonance imaging in coronary artery disease. Dordrecht: Kluwer Academic Publishers; 1991.p.49–80.

    Google Scholar 

  7. Keijer JT. First-pass magnetic resonance imaging of myocardial perfusion: a quantitative approach [dissertation]. Amsterdam: Vrije Universiteit Amsterdam; 1996.

    Google Scholar 

  8. Mühler A. Assessment of myocardial perfusion using contrast-enhanced MR imaging: current status and future developments. MAGMA 1995; 3:21–33.

    Article  PubMed  Google Scholar 

  9. Holman ER, Buller VG, de Roos A, et al. Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis. Circulation 1997; 95:924–31.

    Article  PubMed  CAS  Google Scholar 

  10. Van Rossum AC, Visser FC, Sprenger M, van Eenige MJ, Valk J, Roos JP. Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 1988; 62:628–33.

    Google Scholar 

  11. Semelka RC, Tomei E, Wagner S, et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 1990; 119:1367–73.

    Article  PubMed  CAS  Google Scholar 

  12. Shapiro EP,Rogers WJ, Beyar R, et al. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 1989; 79:706–11.

    Article  PubMed  CAS  Google Scholar 

  13. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995; 91:1006–15.

    Article  PubMed  CAS  Google Scholar 

  14. Pennell DJ, Underwood SR, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992; 70:34–40.

    Article  PubMed  CAS  Google Scholar 

  15. Van Rugge FP, Van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994; 90:127–38.

    Google Scholar 

  16. Kramer CM, Lima JAC, Reichek N, et al. Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 1993; 88:1279–88.

    Google Scholar 

  17. Kramer CM, Rogers WJ, Theobald TM, Power TP, Petruolo S, Reichek N. Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 1996; 94:660–6.

    Article  PubMed  CAS  Google Scholar 

  18. Marcus JT, Götte MJ, Van Rossum AC, et al. Myocardial function in infarcted and remote regions early after infarction in man. Assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 1997; 38:803–10.

    Article  PubMed  CAS  Google Scholar 

  19. Van Rugge FP, van der Wall EE, van Dijkman PR, Louwerenburg HW, de Roos A, Bruschke AV. Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 1992; 70:1233–7.

    Google Scholar 

  20. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first-pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993; 29:485–97.

    Article  PubMed  CAS  Google Scholar 

  21. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991; 18:959–65.

    Article  PubMed  CAS  Google Scholar 

  22. Schaefer S, Van Tyen R, Saloner D. Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR-imaging in humans. Work in progress. Radiology 1992; 185:795–801.

    Google Scholar 

  23. Klein MA, Collier BD, Hellman RS, Bamrah VS. Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced turbo-fast low-angle shot MR images. Am J Roentgenol 1993; 161:257–63.

    CAS  Google Scholar 

  24. Eichenberger AC, Schuiki E, Koechli VD, Amann FW, McKinnon GC, Von Schulthess GK. Ischemic heart disease: Assessment with Gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 1994; 4:425–31.

    Article  PubMed  CAS  Google Scholar 

  25. Walsh EG, Doyle M, Lawson M, Blackwell GG, Pokost GM. Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. Magn Reson Med 1995; 34:39–47.

    Article  PubMed  CAS  Google Scholar 

  26. Keijer JT, Bax JJ, van Rossum AC, Visser FC, Visser CA. Myocardial perfusion imaging: clinical experience and recent progress in radionuclide scintigraphy and magnetic resonance imaging. Int J Card Imaging 1997; 13:415–31.

    Google Scholar 

  27. Lauerma K, Virtanen KS, Sipilä LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel, proximal left anterior descending coronary artery disease before and after revascularization.

    Google Scholar 

  28. Circulation 1997; 96:2859–67.

    Google Scholar 

  29. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997; 204:373–84.

    PubMed  CAS  Google Scholar 

  30. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography [published erratum appears in N Engl J Med 1993; 330:152]. N Engl J Med 1993; 328:828–32.

    Article  PubMed  CAS  Google Scholar 

  31. Duerinckx AJ, Urman MK. Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 1994; 193:731–8.

    PubMed  CAS  Google Scholar 

  32. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J 1993; 70:315–26.

    Article  PubMed  CAS  Google Scholar 

  33. Post JC, Van Rossum AC, Hofman MB, Valk J, Visser CA. Three-dimensional respiratory gated MR angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol 1996; 166:1399–404.

    Google Scholar 

  34. Post JC, van Rossum AC, Hofman MB, De Cock CC, Valk J, Visser CA. Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 1997; 18:426–33.

    Article  PubMed  CAS  Google Scholar 

  35. Van Rossum AC, Sprenger M, Visser FC, Peels KH, Valk J, Roos JP. An in vivo validation of quantitative blood flow imaging in arteries and veins using magnetic resonance phase-shift techniques. Eur Heart J 1991; 12:117–26.

    PubMed  Google Scholar 

  36. Hofman MB, Visser FC, Van Rossum AC, Vink QM, Sprenger M, Westerhof N. In vivo validation of magnetic resonance volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 1995; 33:778–84.

    Google Scholar 

  37. Clarke GD, Eckels R, Chaney C, et al. Measurement of absolute epicardial coronary artery flow and flow reserve with breath-hold cine phase-contrast magnetic resonance imaging. Circulation 1995; 91:2627–34.

    Article  PubMed  CAS  Google Scholar 

  38. Edelman RR, Manning WJ, Gervino E, Li W. Flow velocity quantification in human coronary arteries with fast, breath-Hold MR Angiography. J Magn Reson Imaging 1993; 3:699–703.

    Article  PubMed  CAS  Google Scholar 

  39. Keegan J, Firmin D, Gatehouse P, Longmore D. The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 1994; 31:526–36.

    Article  PubMed  CAS  Google Scholar 

  40. Sakuma H, Blake LM, Amidon TM, et al. Coronary flow reserve: noninvasive measurements in humans with breath-hold velocity-encoded cine MR imaging. Radiology 1996; 198:745–50.

    PubMed  CAS  Google Scholar 

  41. Hundley WG, Lange RA, Clarke GD, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996; 93:1502–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hofman MBM, Van Rosssum AC, Sprenger M, Westerhof N. Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurements: effects of cardiac and respiratory motion. Magn Reson Med 1996; 35:521–31.

    Google Scholar 

  43. Post JC. Magnetic resonance coronary angiography: a clinical evaluation [dissertation]. Amsterdam: Vrije Universiteit Amsterdam, 1997.

    Google Scholar 

  44. Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 1996; 93:660–6.

    Article  PubMed  CAS  Google Scholar 

  45. Kersting-Sommerhoff BA, Diethelm L, Stanger P, et al. Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am Heart J 1990; 120:133–42.

    Article  PubMed  CAS  Google Scholar 

  46. Martinez JE, Mohiaddin RH, Kilner PJ, et al. Obstruction in extracardiac ventriculopulmonary conduits: value of nuclear magnetic resonance imaging with velocity mapping and Doppler echocardiography. J Am Coll Cardiol 1992; 20:338–44.

    Article  PubMed  CAS  Google Scholar 

  47. Hirsch R, Kilner PJ, Connelly MS, Redington AN, St John Sutton MG, Somerville J. Diagnosis in adolescents and adults with congenital heart disease. Prospective assessment of individual and combined roles of magnetic resonance imaging and transesophageal echocardiography. Circulation 1994; 90:2937–51.

    Article  PubMed  CAS  Google Scholar 

  48. Helbing WA, Rebergen SA, Maliepaard C, et al. Quantification of right ventricular functin with magnetic resonance imaging in children with normal hearts and with congenital heart disease. Am Heart J 1995; 130:828–37.

    Article  PubMed  CAS  Google Scholar 

  49. Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation 1995; 91:2955–60.

    Article  PubMed  CAS  Google Scholar 

  50. Masui T, Finck S, Higgins CB. Constrictive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology 1992; 182:369–73.

    PubMed  CAS  Google Scholar 

  51. Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB. Vena caval flow: assessment with cine MR velocity mapping. Radiology 1990; 177:537–41.

    PubMed  CAS  Google Scholar 

  52. Wagner S, Auffermann W, Buser P, et al. Diagnostic accuracy and estimation of the severity of valvular regurgitation from the signal void on cine magnetic resonance images. Am Heart J 1989; 118:760–7.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki J, Caputo GR, Kondo C, Higgins CB. Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. AJR Am J Roentgenol 1990; 155:723–7.

    PubMed  CAS  Google Scholar 

  54. Kilner PJ, Manzara CC, Mohiaddin RH, et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 1993; 87:1239–48.

    Article  PubMed  CAS  Google Scholar 

  55. Sechtem U, Pflugfelder PW, Cassidy MM, et al. Mitral or aortic regurgitation: quantification of regurgitant volumes with cine MR imaging. Radiology 1988; 167:425–30.

    PubMed  CAS  Google Scholar 

  56. Galjee MA, Van Rossum AC, Van Eenige MJ, et al. Magnetic resonance imaging of the pulmonary venous flow pattern in mitral regurgitation. Independence of the investigated vein. Eur Heart J 1995; 16:1675–85.

    PubMed  CAS  Google Scholar 

  57. Sondergaard L, Lindvig K, Hildebrandt P, et al. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Hear J 1993; 125:1081–90.

    Article  CAS  Google Scholar 

  58. Globits S, Blake L, Bourne M, et al. Assessment of hemodynamic effects of angiotensin-converting enzyme inhibitor therapy in chronic aortic regurgitation by using velocity encoded cine magnetic resonance imaging. Am Heart J 1996; 131:289–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Rossum, A.C. (1998). Magnetic Resonance Imaging of Cardiac Function and Flow: Present and Future. In: Van Der Wall, E.E., Blanksma, P.K., Niemeyer, M.G., Vaalburg, W., Crijns, H.J.G.M. (eds) Advanced Imaging In Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0866-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0866-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3746-4

  • Online ISBN: 978-94-007-0866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics