Skip to main content

Study of Cardiac Function with PET or SPECT

  • Chapter
  • 123 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 202))

Abstract

The measurement and knowledge of myocardial function is extremely important for the diagnostic and prognostic assessment of the cardiac patient. It is well known, for example, that the likelihood of 1-year survival after myocardial infarction is directly and exponentially proportional to the value of the resting left ventricular ejection fraction (LVEF)1. Measurement of myocardial function has traditionally been implemented with planar nuclear (first pass, gated blood pool) and planar non-nuclear techniques (echocardiography, contrast ventriculography), as well as, more recently, with tomographic nuclear (gated perfusion SPECT, gated blood pool SPECT, gated PET) and tomographic non-nuclear techniques (cine MRI, cine CT). Of all these techniques, only gated perfusion SPECT and PET offer the opportunity to simultaneously acquire information on both the perfusion and the function of the left ventricle, and to do it in threedimensional and quantitative fashion. Since it is increasingly being reported that the knowledge of global LVEF provides incremental prognostic value over that of myocardial perfusion alone2, gated perfusion SPECT and PET are likely to be increasingly utilized in this era of health care cost containment and emphasis on outcomes, and will represent the main focus of this chapter. The myocardial function parameters obtainable from gated perfusion SPECT and gated PET are LVEF, regional (segmental) myocardial wall motion and wall thickening. Before addressing each of them in detail, it is appropriate to briefly describe the acquisition of a gated SPECT or PET study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risk stratification and survival after myocardial infarction. N Engl J Med 1983; 309:331–6.

    Google Scholar 

  2. Mahmarian JJ, Mahmarian AC, Marks GF, Pratt CM, Verani MS. Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 1995; 25:1333–40.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhle WG, Porenta G, Huang SC, Phelps ME, Schelbert HR. Issues in the quantitation of reoriented cardiac PET images. J Nucl Med 1992; 33:1235–42.

    PubMed  CAS  Google Scholar 

  4. Germano G, Kavanagh PB, Su HT, et al. Automatic reorientation of threedimensional, transaxial myocardial perfusion SPECT images. J Nucl Med 1995; 36:1107–14.

    PubMed  CAS  Google Scholar 

  5. Germano G, Kavanagh PB, Chen J, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995; 36:2127–32.

    PubMed  CAS  Google Scholar 

  6. Miller TR, Wallis JW, Landy BR, Gropler RJ, Sabharwal CL. Measurement of global and regional left ventricular function by cardiac PET. J Nucl Med 1994; 35:999–1005.

    PubMed  CAS  Google Scholar 

  7. Mazzanti M, Germano G, Kiat H, Friedman J, Berman DS. Fast technetium 99m-labeled sestamibi gated single-photon emission computed tomography for evaluation of myocardial function. J Nucl Cardiol 1996; 3:143–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nichols K, DePuey EG, Rozanski A. Automation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 1996; 3:475–82.

    Article  PubMed  CAS  Google Scholar 

  9. Faber TL, Akers MS, Peshock RM, Corbett JR. Three-dimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 1991; 32:2311–7.

    PubMed  CAS  Google Scholar 

  10. Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995; 36:2138–47.

    PubMed  CAS  Google Scholar 

  11. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979:3:299–308.

    Article  PubMed  CAS  Google Scholar 

  12. Moriel M, Germano G, Kiat H, et al. Automatic measurement of left ventricular ejection fraction by gated SPECT Tc-99m sestamibi: a comparison with radionuclide ventriculography [abstract]. Circulation 1993; 88(4 Suppl):1582.

    Google Scholar 

  13. He ZX, Mahmarian JJ, Preslar JS, Verani MS. Correlations of left ventricular ejection fractions determined by gated SPECT with thallium and sestamibi and by first-pass radionuclide angiography [abstract]. J Nucl Med 1997; 38(5 Suppl):27P.

    Google Scholar 

  14. Everaert H, Franken P, Flamen P, Momen A, Bossuyt A. Left ventricular volumes and ejection fraction from gated SPECT myocardial perfusion studies [abstract]. J Nucl Cardiol 1997; 4(1 part 2):S102.

    Article  Google Scholar 

  15. Zanger D, Bhatnagar A, Hausner E, et al. Automated calculation of ejection fraction from gated Tc-99m sestamibi images — comparison to quantitative echocardiography. J Nucl Cardiol 1997; 4(1 part 2):S78.

    Article  Google Scholar 

  16. Di Leo C, Bestetti A, Tagliabue L, et al. 99mTc-tetrofosmin gated-SPECT LVEF: correlation with echocardiography and contrastographic ventriculography [abstract]. J Nucl Cardiol 1997; 4(1 part 2):S56.

    Google Scholar 

  17. Blanksma PK. Personal communication. 1997.

    Google Scholar 

  18. Faber TL, Stokely EM, Peshock RM, Corbett JR. A model-based fourdimensional left ventricular surface detector. IEEE Trans Med Imaging 1991:10:321–9.

    Article  PubMed  CAS  Google Scholar 

  19. Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996; 27:1612–20.

    Article  PubMed  CAS  Google Scholar 

  20. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 1993; 22:1455–64.

    Article  PubMed  CAS  Google Scholar 

  21. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew Rl. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med 1994; 35:1185–92.

    PubMed  CAS  Google Scholar 

  22. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995; 36:952–5.

    PubMed  CAS  Google Scholar 

  23. Mochizuki T, Murase K, Fujiwara Y, Tanada S, Hamamoto K, Tauxe WN. Assessment of systolic thickening with thallium-201 ECG-gated single-photon emission computed tomography: a parameter for local left ventricular function. J Nucl Med 1991:32:1496–500.

    PubMed  CAS  Google Scholar 

  24. Marcassa C, Marzullo P, Sambuceti G, Parodi O. Prediction of reversible perfusion defects by quantitative analysis of post-exercise electrocardiogramgated acquisition of technetium-99m 2-methoxyisobutylisonitrile myocardial perfusion scintigraphy. Eur J Nucl Med 1992:19:796–9.

    Article  PubMed  CAS  Google Scholar 

  25. Marcassa C, Marzullo P, Parodi O, Sambuceti G, L’Abbate A. A new method for noninvasive quantitation of segmental myocardial wall thickening using technetium-99m 2-methoxy-isobutyl-isonitrile scintigraphy-results in normal subjects. J Nucl Med 1990; 31:173–7.

    PubMed  CAS  Google Scholar 

  26. Fukuchi K, Uehara T, Morozumi T, et al. Quantification of systolic count increase in technetium-99m-MIBI gated myocardial SPECT. J Nucl Med 1997; 38:1067–73.

    PubMed  CAS  Google Scholar 

  27. Williams K, Taillon L. Reversible ischemia in severe stress technetium 99m-labeled sestamibi perfusion defects assessed from gated single-photon emission computed tomographic polar map Fourier analysis. J Nucl Cardiol 1995; 2:199–206.

    Article  PubMed  CAS  Google Scholar 

  28. Bartlett ML, Buvat I, Vaquero JJ, Mok D, Dilsizian V, Bacharach SL. Measurement of myocardial wall thickening from PET/SPECT images: comparison of two methods. J Comput Assist Tomogr 1996; 20:473–81.

    Article  PubMed  CAS  Google Scholar 

  29. Yamashita K, Tamaki N, Yonekura Y, et al. Quantitative analysis of regional wall motion by gated myocardial positron emission tomography: validation and comparison with left ventriculography. J Nucl Med 1989; 30:1775–86.

    PubMed  CAS  Google Scholar 

  30. Yamashita K, Tamaki N, Yonekura Y, et al. Regional wall thickening of left ventricle evaluated by gated positron emission tomography in relation to myocardial perfusion and glucose metabolism. J Nucl Med 1991; 32:679–85.

    PubMed  CAS  Google Scholar 

  31. Buvat I, Bartlett ML, Kitsiou AN, Dilsizian V, Bacharach SL. A “hybrid” method for measuring myocardial wall thickening from gated PET/SPECT images. J Nucl Med 1997; 38:324–9.

    PubMed  CAS  Google Scholar 

  32. Germano G, Erel J, Lewin H, Kavanagh P, Berman D. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997; 30:1360–67.

    Article  PubMed  CAS  Google Scholar 

  33. Sheehan FH, Dodge HT, Mathey D, Brown BG, Bolson EL, Mitten S. Application of the centerline method: analysis of change in regional left ventricular wall motion in serial studies. Comput Cardiol, 1983:97–100.

    Google Scholar 

  34. Germano G, Van Train KF, Garcia EV, et al. Quantitation of myocardial perfusion with SPECT: current issues and future trends. In: Zaret BL, Beller G, editors. Nuclear cardiology: state of the art and future directions. St. Louis: Mosby, 1993:77–88.

    Google Scholar 

  35. Germano G, Kavanagh PB, Berman DS. Effect of the number of projections collected on quantitative perfusion and left ventricular ejection fraction measurements from gated myocardial perfusion single-photon emission computed tomographic images. J Nucl Cardiol 1996; 3:395–402.

    Article  PubMed  CAS  Google Scholar 

  36. Sheehan FH. Principles and practice of contrast ventriculography. In: Skorton DJ, editor. Marcus cardiac imaging: a companion to Braunwald’s Heart disease. 2nd ed. Philadelphia: Saunders; 1996:164–87.

    Google Scholar 

  37. Katz AS, Force TL, Folland ED, Aebischer N, Sharma S, Parisi AF. Echocardiographic assessement of ventricular systolic function. In: Skorton DJ, editor. Marcus cardiac imaging: a companion to Braunwald’s Heart disease. 2nd ed. Philadelphia: Saunders, 1996:297–324.

    Google Scholar 

  38. Weyman AE, Franklin TD Jr., Hogan RD, et al. Importance of temporal heterogeneity in assessing the contraction abnormalities associated with acute myocardial ischemia. Circulation 1984; 70:102–12.

    Article  PubMed  CAS  Google Scholar 

  39. Garcia EV, Cooke CD, Van Train KF, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990; 66:23E–31E.

    Article  PubMed  CAS  Google Scholar 

  40. Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994; 35:609–18.

    PubMed  Google Scholar 

  41. Sechtem U, Sommerhoff BA, Markiewicz W, White RD, Cheitlin MD, Higgins CB. Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction. Am J Cardiol 1987; 59:145–51.

    Article  PubMed  CAS  Google Scholar 

  42. Pflugfelder PW, Sechtem UP, White RD, Higgins CB. Quantification of regional myocardial function by rapid cine MR imaging. AJR Am J Roentgenol 1988; 150:523–9.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Germano, G. (1998). Study of Cardiac Function with PET or SPECT. In: Van Der Wall, E.E., Blanksma, P.K., Niemeyer, M.G., Vaalburg, W., Crijns, H.J.G.M. (eds) Advanced Imaging In Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0866-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0866-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3746-4

  • Online ISBN: 978-94-007-0866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics