Skip to main content

Schizophrenia Has a High Heritability, but Where Are the Genes?

  • Chapter
  • First Online:
Handbook of Schizophrenia Spectrum Disorders, Volume I

Abstract

Schizophrenia is a debilitating psychiatric disorder affecting 1% of the world’s population. The diagnostic criteria (DSM IV) are broad and characterized by positive and negative symptoms which vary from patient to patient and over the course of the illness. The disease is known to have a genetic component, a reported heritability estimate of 80% and a concordance rate of ~50% in monozygotic twins. Most research on the disease has concentrated on the search for genes using traditional approaches. This includes cytogenetics, linkage, association, gene expression and whole genome scans. Although this extensive research has identified a number of genomic regions of interest and some candidate genes, it has not produced any confirmed causations. Yet, identification of the cause(s) of this disease will be required in order to develop effective preventive management and corrective strategies. Considering the decades of research in the field, one obvious question arises: where are the genes that cause schizophrenia? This forms the focus of the chapter. During the course of this discussion, we will argue that there are two main reasons as to why traditional genetic approaches have met with little success in schizophrenia. First is the diagnosis of the clinical phenotype. There are no biological markers of this disease and the diagnosis is based on interviews and self-reporting of the patient. Also, the DSM-IV diagnostic criteria are broad enough that two individuals with schizophrenia may have very few symptoms in common. This leads to a highly heterogeneous sample, which is not optimal in traditional genetic research, or research on complex disorders. The second issue deals with the genetic hypothesis being tested. Here the assumption is that a number of genetic variants of small to moderate effect interact with environmental factors leading to a predisposition for schizophrenia. What is not fully appreciated is the actual number of potential gene variants involved, the heterogeneous mechanism and timing of their occurrence and recurrence and any understanding of their interaction with the environment. These issues recognize that there is a long pathophysiological chain that extends from genes, through proteins, neurons, cognition, behaviour, symptoms, and finally to the DSM-IV construct of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDCV:

Common disease common variant

CDRV:

Common disease rare variant

CNV:

Copy-number variation

DSM-IV:

Diagnostic and statistics manual of mental disorders

GWAS:

Genome-wide association study

ISC:

International schizophrenia consortium

MHC:

Major histocompatibility complex

MRI:

Magnetic resonance imaging

RR:

Relative risk

SNP:

Single nucleotide polymorphism

VCFS:

Velo-cardio facial syndrome

References

  1. Saha S, Chant D, Welham J et al (2005) A systematic review of the prevalence of schizophrenia. PLoS Med 2:413–433

    Article  Google Scholar 

  2. American Psychiatric Association (1990) Diagnostic and statistical manual of mental disorders DSM-IV-TR text revision. American Psychiatric Association, Washington, DC

    Google Scholar 

  3. Knapp M, Simon J, Percudani M (2002) Economics of schizophrenia: a review. In: Maj M, Sartorius M (eds) Schizophrenia, 2nd edn. Wiley, Chichester, pp 413–440

    Chapter  Google Scholar 

  4. Caldwell CB, Gottesman II (1992) Schizophrenia – a high-risk factor for suicide: clues to risk reduction. Suicide Life Threat Behav 22:479–493

    CAS  PubMed  Google Scholar 

  5. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349:1436–1442

    Article  CAS  PubMed  Google Scholar 

  6. Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97:12–17

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    Article  PubMed  Google Scholar 

  8. The International Schizophrenia Consortium (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    Google Scholar 

  9. Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    CAS  PubMed  Google Scholar 

  10. Shi J, Levinson DF, Duan J et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757

    CAS  PubMed  Google Scholar 

  11. Braff D, Shork NK, Gottesman II (2007) Endophenotyping schizophrenia. Am J Psychiatry 164:705–707

    Article  PubMed  Google Scholar 

  12. Crow TJ (2007) How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry 164:13–21

    Article  PubMed  Google Scholar 

  13. Straub RE, Jiang Y, MacLean CJ et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348

    Article  CAS  PubMed  Google Scholar 

  14. Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    Article  PubMed  Google Scholar 

  15. Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    Article  CAS  PubMed  Google Scholar 

  16. Lewis CM, Levinson DF, Wise LH et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. Am J Hum Genet 73:34–48

    Article  CAS  PubMed  Google Scholar 

  17. Ng MY, Levinson DF, Faraone SV et al (2009) Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14:774–785

    Article  CAS  PubMed  Google Scholar 

  18. Venter CJ, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  19. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  20. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 229:1299–1320

    Article  Google Scholar 

  21. Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    Article  CAS  PubMed  Google Scholar 

  22. Risch N (1990) Linkage strategies for genetically complex traits. 1. Multilocus models. Am J Hum Genet 46:222–228

    CAS  PubMed  Google Scholar 

  23. Laursen TM, Munk-Olsen T, Nordentoft M et al (2008) A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a Danish population-based cohort. J Clin Psychiatry 69:1187–1188

    Article  Google Scholar 

  24. Wei J, Hemmings GP (2000) The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 25:376–377

    Article  CAS  PubMed  Google Scholar 

  25. Murphy KC (2002) Schizophrenia and velo-cardio-facial syndrome. Lancet 359:426–430

    Article  PubMed  Google Scholar 

  26. Murphy KC, Jones LA, Owen MJ (1999) High rates of schizophrenia in adults with velo-cardiofacial syndrome. Arch Gen Psychiatry 56:940–945

    Article  CAS  PubMed  Google Scholar 

  27. International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Article  Google Scholar 

  28. Stefansson H, Rujescu D, Cichon S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236

    Article  CAS  PubMed  Google Scholar 

  29. Tam GW, Redon R, Carter NP et al (2009) The role of DNA copy number variation in schizophrenia. Biol Psychiatry 66:1005–1012

    Article  CAS  PubMed  Google Scholar 

  30. Walsh T, McClellan JM, McCarthy SE et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543

    Article  CAS  PubMed  Google Scholar 

  31. Xu B, Roos JL, Levy S et al (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40:880–885

    Article  CAS  PubMed  Google Scholar 

  32. Gottesman II, Shields J (1967) A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 58:199–205

    Article  CAS  PubMed  Google Scholar 

  33. Lohmueller KE, Pearce CL, Pike M et al (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182

    Article  CAS  PubMed  Google Scholar 

  34. McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199

    Article  PubMed  Google Scholar 

  35. Fanous AH, Kendler KS (2008) Genetics of clinical features and subtypes of schizophrenia: a review of the recent literature. Curr Psychiatry Rep 10:164–170

    Article  PubMed  Google Scholar 

  36. Rietkerk T, Boks MP, Sommer IE et al (2008) The genetics of symptom dimensions of schizophrenia: review and meta-analysis. Schizophr Res 102:197–205

    Article  CAS  PubMed  Google Scholar 

  37. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  38. Allen AJ, Griss ME, Folley BS et al (2009) Endophenotypes in schizophrenia: a selective review. Schizophr Res 109:24–37

    Article  PubMed  Google Scholar 

  39. Agarwal N, Port JD, Bazzocchi M et al (2010) Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology 255:23–41

    Article  PubMed  Google Scholar 

  40. Ellison-Wright I, Bullmore E (2010) Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res 117:1–12

    Article  PubMed  Google Scholar 

  41. Ellison-Wright I, Glahn DC, Laird AR et al (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023

    Article  PubMed  Google Scholar 

  42. Smieskova R, Fusar-Poli P, Allen P et al (2010) Neuroimaging predictors of transition to psychosis – a systematic review and meta-analysis. Neurosci Biobehav Rev 34:1207–1222

    Article  CAS  PubMed  Google Scholar 

  43. Craddock N, Owen MJ (2010) The Kraepelinian dichotomy – going, going… but still not gone. Br J Psychiatry 196:92–95

    Article  PubMed  Google Scholar 

  44. Lichtenstein P, Yip BH, Björk C et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239

    Article  CAS  PubMed  Google Scholar 

  45. Ferreira MA, O’Donovan MC, Meng YA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  CAS  PubMed  Google Scholar 

  46. Green EK, Grozeva D, Jones I et al (2009) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry [Epub ahead of print]. doi:10.1038/mp.2009.49

    Google Scholar 

  47. Moskvina V, Craddock N, Holmans P et al (2009) Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 14:252–260

    Article  CAS  PubMed  Google Scholar 

  48. Arking DE, Cutler DJ, Brune CW et al (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164

    Article  CAS  PubMed  Google Scholar 

  49. Alarcón M, Abrahams BS, Stone JL et al (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159

    Article  PubMed  Google Scholar 

  50. Rossi E, Verri AP, Patricelli MG et al (2008) A 12 Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51:631–638

    Article  PubMed  Google Scholar 

  51. Friedman JI, Vrijenhoek T, Markx S et al (2008) CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 13:261–266

    Article  CAS  PubMed  Google Scholar 

  52. Mefford HC, Sharp AJ, Baker C et al (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359:1685–1699

    Article  CAS  PubMed  Google Scholar 

  53. Miller DT, Shen Y, Weiss LA et al (2009) Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46:242–248

    Article  CAS  PubMed  Google Scholar 

  54. Guilmatre A, Dubourg C, Mosca AL et al (2009) Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 66:947–956

    Article  CAS  PubMed  Google Scholar 

  55. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  Google Scholar 

  56. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  Google Scholar 

  57. Perkins DO, Jeffries CD, Jarskog LF et al (2007) microRNAexpression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27

    Article  PubMed  Google Scholar 

  58. Beveridge NJ, Tooney PA, Carroll AP et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    Article  CAS  PubMed  Google Scholar 

  59. Hansen T, Olsen L, Lindow M et al (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 2:e873

    Article  PubMed  Google Scholar 

  60. Xu Y, Li F, Zhang B et al (2010) MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 119:219–227

    Article  PubMed  Google Scholar 

  61. Feng J, Sun G, Yan J et al (2009) Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 4:e6121

    Article  PubMed  Google Scholar 

  62. Tabares-Seisdedos R, Rubenstein JL (2009) Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 14:563–589

    Article  CAS  PubMed  Google Scholar 

  63. Stark KL, Xu B, Bagchi A et al (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    Article  CAS  PubMed  Google Scholar 

  64. Klose RJ, Bird AP, Genomic DN (2006) A methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  65. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  66. Stuffrein-Roberts S, Joyce PR, Kennedy MA (2008) Role of epigenetics in mental disorders. Aust NZ J Psychiatry 42:97–107

    Article  Google Scholar 

  67. Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  68. Das S, Kubota T, Song M et al (1997–1998) Methylation analysis of the fragile X syndrome by PCR. Genet Test 1:151–155

    Google Scholar 

  69. Singh SM, Murphy B, O’Reilly R (2002) Epigenetic contributors to the discordance of monozygotic twins. Clin Genet 62:97–103

    Article  CAS  PubMed  Google Scholar 

  70. Singh SM, Murphy B, O’Reilly RL (2003) Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 64:451–460

    Article  CAS  PubMed  Google Scholar 

  71. Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  Google Scholar 

  72. Singh SM, McDonald P, Murphy B et al (2004) Incidental neurodevelopmental episodes in the etiology of schizophrenia: an expanded model involving epigenetics and development. Clin Genet 65:435–440

    Article  CAS  PubMed  Google Scholar 

  73. Petronis A, Gottesman II, Kan P, Kennedy JL et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178

    PubMed  Google Scholar 

  74. Mill J, Dempster E, Caspi A et al (2006) Evidence for monozygotic twin MZ discordance in methylation level at two CpG sites in the promoter region of the catechol-O methyltransferase COMT gene. Am J Med Genet B Neuropsychiatr Genet 141:421–425

    Google Scholar 

  75. Gavin DP, Sharma RP (2010) Histone modifications, DNA methylation, and schizophrenia. Neurosci Biobehav Rev 34:882–888

    Article  CAS  PubMed  Google Scholar 

  76. Hashimoto T, Arion D, Unger T et al (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13:147–161

    Article  CAS  PubMed  Google Scholar 

  77. Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52:293–304

    Article  CAS  PubMed  Google Scholar 

  78. Fatemi SH, Stary JM, Earle JA et al (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72:109–122

    Article  PubMed  Google Scholar 

  79. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  80. Frotscher M (2010) Role for Reelin in stabilizing cortical architecture. Trends Neurosci Jun 30. [Epub ahead of print]

    Google Scholar 

  81. Chen Y, Sharma RP, Costa RH et al (2002) On the epigenetic regulation of the human Reelin promoter. Nucl Acids Res 30:2930–2939

    Article  CAS  PubMed  Google Scholar 

  82. Ruzicka WB, Zhubi A, Veldic M et al (2007) Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 12:385–397

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick P. McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McDonald, P.P., Singh, S.M. (2011). Schizophrenia Has a High Heritability, but Where Are the Genes?. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0837-2_9

Download citation

Publish with us

Policies and ethics