Skip to main content

Glutamatergic Neurotransmission Abnormalities and Schizophrenia

  • Chapter
  • First Online:
Handbook of Schizophrenia Spectrum Disorders, Volume I

Abstract

Schizophrenia affects approximately 1% of the adult population worldwide and requires lifelong therapy. Hyperfunction of the dopaminergic system has long been hypothesized as the underlying cause of schizophrenia. However, this hypothesis explains mostly the positive symptoms associated with schizophrenia. Several lines of evidence point to the glutamatergic system and suggest that abnormalities in this system may play a crucial role in the pathophysiological features of schizophrenia. Most prominently, N-methyl-d-aspartate receptor hypofunction has been associated with the positive, negative, and cognitive symptoms of schizophrenia. In this chapter, we describe the evidence showing that N-methyl-d-aspartate receptor hypofunction may be crucial in the pathophysiological features of this disorder. Although a plethora of evidence is available from preclinical studies, this chapter is focused mainly on the findings from patients with schizophrenia. In addition to N-methyl-d-aspartate receptors, we also describe the findings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors and glutamate transporters in patients with schizophrenia. Overall, these findings suggest that therapeutic agents directed toward glutamatergic systems may be helpful in the treatment of positive and negative symptoms and cognitive deficits associated with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NMDA:

N-methyl-d-aspartate

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate

PCP:

Phenylcyclidine

GluR:

Glutamate receptor

PSD:

Postsynaptic density

MRS:

Magnetic resonance spectroscopy

NAAAG:

N-acetyl-L-aspartyl-L-glutamate

mGluR:

Metabotropic glutamate receptor

GlyT:

Glycine transporter

GLAT:

Glutamate transporter

References

  1. Rossler W, Salize HJ, van Os J, Riecher-Rossler A (2005) Size of burden of schizophrenia and psychiatric disorders. Eur Neuropsychopharmacol 15:399–409

    PubMed  Google Scholar 

  2. Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4: clinical features and conceptualization. Schizophr Res 110:1–23

    PubMed  Google Scholar 

  3. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol Copenh 20:140–144

    CAS  PubMed  Google Scholar 

  4. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380

    CAS  PubMed  Google Scholar 

  5. Burt DR, Creese I, Snyder SH (1976) Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol 12:800–812

    CAS  PubMed  Google Scholar 

  6. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    CAS  PubMed  Google Scholar 

  7. Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    CAS  PubMed  Google Scholar 

  8. Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  9. Tamminga CA, Buchanan RW, Gold JM (1998) The role of negative symptoms and cognitive dysfunction in schizophrenia outcome. Int Clin Psychopharmacol 13(Suppl 3):21–26

    Google Scholar 

  10. Javitt DC (2001) Management of negative symptoms of schizophrenia. Curr Psychiatry Rep 3:413–417

    CAS  PubMed  Google Scholar 

  11. Knable MB, Hyde TM, Herman MM et al (1994) Quantitative autoradiography of dopamine-D1 receptors, D2 receptors, and dopamine uptake sites in postmortem striatal specimens from schizophrenic patients. Biol Psychiatry 36:827–835

    CAS  PubMed  Google Scholar 

  12. Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia – a synthesis and selective review. J Psychopharmacol 21:440–452

    CAS  PubMed  Google Scholar 

  13. Krystal JH, Perry EB Jr, Gueorguieva R et al (2005) Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62:985–994

    CAS  PubMed  Google Scholar 

  14. Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495–507

    CAS  PubMed  Google Scholar 

  15. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  PubMed  Google Scholar 

  16. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  17. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  18. Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    CAS  PubMed  Google Scholar 

  19. Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    CAS  PubMed  Google Scholar 

  20. Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    CAS  PubMed  Google Scholar 

  21. Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21:7901–7908

    CAS  PubMed  Google Scholar 

  22. Hui C, Wardwell B, Tsai GE (2009) Novel therapies for schizophrenia: understanding the glutamatergic synapse and potential targets for altering N-methyl-D-aspartate neurotransmission. Recent Pat CNS Drug Discov 4:220–238

    CAS  PubMed  Google Scholar 

  23. Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Rev 31:288–294

    CAS  PubMed  Google Scholar 

  24. Coyle JT, Tsai G, Goff DC (2002) Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord 1:183–189

    CAS  PubMed  Google Scholar 

  25. Ikeda K, Nagasawa M, Mori H et al (1992) Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett 313:34–38

    CAS  PubMed  Google Scholar 

  26. Monyer H, Sprengel R, Schoepfer R et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    CAS  PubMed  Google Scholar 

  27. Moriyoshi K, Masu M, Ishii T et al (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    CAS  PubMed  Google Scholar 

  28. Marino PJ, Conn PJ (2002) Direct and indirect modulation of the NMethyl-D-Aspartate receptor: potential for the development of novel antipsychotic therapies. Curr Drug Targets CNS Neur Disord 1:1–16

    CAS  Google Scholar 

  29. Chatterton JE, Awobuluyi M, Premkumar LS, et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    CAS  PubMed  Google Scholar 

  30. Platt SR (2005) The role of glutamate in central nervous system health and disease: a review. Veterinary J 173:278–286

    Google Scholar 

  31. Watis L, Chen SH, Chua HC, Chong SA, Sim K (2008) Glutamatergic abnormalities of the thalamus in schizophrenia: a systematic review. J Neural Transm 115:493–511

    CAS  PubMed  Google Scholar 

  32. Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    CAS  PubMed  Google Scholar 

  33. Schluter K, Figiel M, Rozyczka J, Engele J (2002) CNS region-specific regulation of glial glutamate transporter expression. Eur J Neurosci 16:836–842

    PubMed  Google Scholar 

  34. Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci 7:1342–1352

    CAS  PubMed  Google Scholar 

  35. Berger UV, Luthi-Carter R, Passani LA et al (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurol 415:52–64

    CAS  PubMed  Google Scholar 

  36. Wroblewska B, Wroblewski JT, Pshenichkin S, Surin A, Sullivan SE, Neale JH (1997) Nacetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181

    CAS  PubMed  Google Scholar 

  37. Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS disorders as a target for drug development: an update. Drug News Persp 11:523–569

    CAS  Google Scholar 

  38. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476

    CAS  PubMed  Google Scholar 

  39. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    CAS  PubMed  Google Scholar 

  40. Kehrer C, Maziashvili N, Dugladze T, Gloveli T (2008) Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci 1:6

    PubMed  Google Scholar 

  41. Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  42. Malhotra AK, Pinals DA, Weingartner H et al (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    CAS  PubMed  Google Scholar 

  43. Radant AD, Bowdle TA, Cowley DS et al (1998) Does ketamine-mediated N-methyl-D-aspartate receptor antagonism cause schizophrenia – like oculomotor abnormalities? Neuropsychopharmacology 19:434–444

    CAS  PubMed  Google Scholar 

  44. Adler CM, Malhotra AK, Elman I et al (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    CAS  PubMed  Google Scholar 

  45. Krystal JH, D’Souza DC, Petrakis IL et al (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 7:125–143

    CAS  PubMed  Google Scholar 

  46. Honey RA, Turner DC, Honey GD et al (2003) Subdissociative dose ketamine produces a deficit in manipulation but not maintenance of the contents of working memory. Neuropsychopharmacology 28:2037–2044

    CAS  PubMed  Google Scholar 

  47. Morgan CJ, Mofeez A, Brandner B et al (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    CAS  PubMed  Google Scholar 

  48. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Ketamine impairs response inhibition and is positively reinforcing in healthy volunteers: a dose-response study. Psychopharmacology 172:298–308

    CAS  PubMed  Google Scholar 

  49. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    CAS  PubMed  Google Scholar 

  50. Butler PD, Zemon V, Schechter I et al (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62:495–504

    PubMed  Google Scholar 

  51. Avila MT, Weiler MA, Lahti AC, Tamminga CA, Thaker GK (2002) Effects of ketamine on leading saccades during smooth-pursuit eye movements may implicate cerebellar dysfunction in schizophrenia. Am J Psychiatry 159:1490–1496

    PubMed  Google Scholar 

  52. Weiler MA, Thaker GK, Lahti AC, Tamminga CA (2000) Ketamine effects on eye movements. Neuropsychopharmacology 23:645–653

    CAS  PubMed  Google Scholar 

  53. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    CAS  PubMed  Google Scholar 

  54. Holcomb HH, Lahti AC, Medoff DR, Weiler M, Tamminga CA (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172

    CAS  PubMed  Google Scholar 

  55. Långsjö JW, Kaisti KK, Aalto S et al (2003) Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:614–623

    PubMed  Google Scholar 

  56. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38

    CAS  PubMed  Google Scholar 

  57. Abel KM, Allin MP, Kucharska-Pietura K, Andrew C, Williams S, David AS, Phillips ML (2003) Ketamine and fMRI BOLD signal: distinguishing between effects mediated by change in blood flow versus change in cognitive state. Hum Brain Mapp 18:135–145

    PubMed  Google Scholar 

  58. Honey GD, Honey RA, O‘Loughlin C et al (2005) Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb Cortex 15:749–759

    CAS  PubMed  Google Scholar 

  59. Northoff G, Richter A, Bermpohl F, et al (2005) NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophr Res 72:235–248. Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Google Scholar 

  60. Rowland LM, Bustillo JR, Mullins PG et al (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396

    PubMed  Google Scholar 

  61. Theberge J, Al-Semaan Y, Williamson PC et al (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160:2231–2233

    PubMed  Google Scholar 

  62. Theberge J, Bartha R, Drost DJ et al (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946

    PubMed  Google Scholar 

  63. Tibbo P, Hanstock C, Valiakalayil A, Allen P (2004) 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 161:1116–1118

    PubMed  Google Scholar 

  64. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    CAS  PubMed  Google Scholar 

  65. Law AJ, Deakin JF (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 12:2971–2974

    CAS  PubMed  Google Scholar 

  66. Akbarian S, Sucher NJ, Bradley D et al (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19–30

    CAS  PubMed  Google Scholar 

  67. Ibrahim HM, Hogg AJ Jr, Healy DJ et al (1823) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000(157):1811–

    Google Scholar 

  68. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160:1100–1109

    PubMed  Google Scholar 

  69. Popken GJ, Leggio MG, Bunney JWE, Jones EG (2002) Expression of mRNAs related to the GABAergic and glutamatergic neurotransmitter systems in the human thalamus: normal and schizophrenic. Thalamus Rel Sys 1:349–369

    CAS  Google Scholar 

  70. Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology. 29(7):1353–1362

    CAS  PubMed  Google Scholar 

  71. Clinton SM, Haroutunian V, Meador-Woodruff JH (2006) Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia. J Neurochem 98:1114–1125

    CAS  PubMed  Google Scholar 

  72. Kornhuber J, Mack-Burkhardt F, Riederer P et al (1989) w3HxMK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77:231–236

    CAS  PubMed  Google Scholar 

  73. Noga JT, Hyde TM, Herman MM et al (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27:168–176

    CAS  PubMed  Google Scholar 

  74. Weissman AD, Casanova MF, Kleinman JE, London ED, De Souza EB (1991) Selective loss of cerebral cortical sigma, but not PCP binding sites in schizophrenia. Biol Psychiatry 54:41–54

    Google Scholar 

  75. Simpson MDC, Slater P, Royston MC, Deakin JFW (1992) Alterations in phencyclidine and sigma binding sites in schizophrenic brains. Schizophrenia Res 6:41–48

    Google Scholar 

  76. Bressan RA, Erlandsson K, Stone JM et al (2005) Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-D-aspartate receptors in vivo. Biol Psychiatry 58:41–46

    CAS  PubMed  Google Scholar 

  77. Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, Ell PJ (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119

    CAS  PubMed  Google Scholar 

  78. Harrison PJ, McLaughlin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452

    CAS  PubMed  Google Scholar 

  79. Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Mol Brain Res 29:211–223

    CAS  PubMed  Google Scholar 

  80. Eastwood SL, Burnet PWJ, Harrison PJ (1997) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction _RT-PCR study. Mol Brain Res 44:92–98

    CAS  PubMed  Google Scholar 

  81. Breese CR, Freedman R, Leonard SS (1995) Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 674:82–90

    CAS  PubMed  Google Scholar 

  82. Healy DJ, Haroutunian V, Powchik P et al (1998) AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics. Neuropsychopharmacology 19:278–286

    CAS  PubMed  Google Scholar 

  83. Sokolov BP (1998) Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ‘neuroleptic- free’ schizophrenics: evidence on reversible up-regulation of typical neuroleptics. J Neurochem 71:2454–2564

    CAS  PubMed  Google Scholar 

  84. Freed WJ, Dillon-Carter O, Kleinman JE (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp Neurol 121:48–56

    CAS  PubMed  Google Scholar 

  85. Toru M, Kurumaji A, Kumashiro S, Suga I, Takashima M, Nishikawa T (1992) Excitatory amino acidergic neurones in chronic schizophrenic brain. Mol Neuropharm 2:241–243

    CAS  Google Scholar 

  86. Porter RHP, Eastwood SL, Harrison PJ (1997) Distribution of kainite receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231

    CAS  PubMed  Google Scholar 

  87. Deakin JFW, Slater P, Simpson MDC et al (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem (52):1781–1786

    CAS  PubMed  Google Scholar 

  88. Nishikawa T, Takashima M, Toru M (1983) Increased [3H] kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 40:245–250

    CAS  PubMed  Google Scholar 

  89. Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    CAS  PubMed  Google Scholar 

  90. Ishimaru M, Kurumaji A, Toru M (1994) Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 35:84–95

    CAS  PubMed  Google Scholar 

  91. Aparicio-Legarza MI, Davis B, Hutson PH, Reynolds GP (1998) Increased density of glutamaterN methyl-D-aspartate receptors in putamen from schizophrenic patients. Neurosci Lett 241:143–146

    CAS  PubMed  Google Scholar 

  92. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  93. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    CAS  PubMed  Google Scholar 

  94. Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNA in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophrenia Res 73:159–172

    CAS  Google Scholar 

  95. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001b) Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12:2885–2887

    CAS  PubMed  Google Scholar 

  96. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    CAS  PubMed  Google Scholar 

  97. Weinberger DR (1996) On the plausibility of the neurodevelopmental hypothesis of schizophrenia. Neuropsychopharmacology 14(Suppl 3):1–11

    Google Scholar 

  98. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    CAS  PubMed  Google Scholar 

  99. Rapoport JL et al (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    CAS  PubMed  Google Scholar 

  100. Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    CAS  PubMed  Google Scholar 

  101. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    CAS  PubMed  Google Scholar 

  102. Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107:535–550

    CAS  PubMed  Google Scholar 

  103. Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376

    CAS  PubMed  Google Scholar 

  104. Stefani MR, Moghaddam B (2005) Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 57:433–436

    CAS  PubMed  Google Scholar 

  105. Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254:1515–1518

    CAS  PubMed  Google Scholar 

  106. Bubeníkova-Valešová V, Balcar VJ, Tejkalová H, Langmeier M, Št’astný F (2006) Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochem Int 48:515–522

    PubMed  Google Scholar 

  107. Sircar R (2003) Postnatal phencyclidine-induced deficit in adult water maze performance is associated with N-methyl-D-aspartate receptor upregulation. Int J Dev Neurosci 21:159–167

    CAS  PubMed  Google Scholar 

  108. Bilder RM, Reiter G, Bates J, Lencz T, Szeszko P, Goldman RS, Robinson D, Lieberman JA, Kane JM (2006) Cognitive development in schizophrenia: follow-back from the first episode. J Clin Exp Neuropsychol 28:270–282

    PubMed  Google Scholar 

  109. Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C (2006) Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res 31:1279–12794

    PubMed  Google Scholar 

  110. Sircar R, Follesa P, Ticku MK (1996) Postnatal phencyclidine treatment differentially regulates N-methyl-D-aspartate receptor subunit mRNA expression in developing rat cerebral cortex. Brain Res Mol Brain Res 40:214–220

    CAS  PubMed  Google Scholar 

  111. Harris LW, Sharp T, Gartlon J, Jones DN, Harrison PJ (2003) Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 18:1706–1710

    PubMed  Google Scholar 

  112. Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269

    CAS  PubMed  Google Scholar 

  113. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    CAS  PubMed  Google Scholar 

  114. Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 95:5341–5346

    CAS  PubMed  Google Scholar 

  115. Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J (2001) A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24:43–49

    CAS  PubMed  Google Scholar 

  116. Krivoy A, Fischel T, Weizman A (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 18:395–405

    CAS  PubMed  Google Scholar 

  117. Gaspar PA, Bustamante ML, Silva H, Aboitiz F (2009) Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 111:891–900

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the National Institute of Mental Health (RO1 MH068777, RO1MH082802, and R21081099), National Alliance for Research on Schizophrenia and Depression, and American Foundation for Suicide Prevention to Dr. Dwivedi; and National Institute of Mental Health (RO1 MH48153 and RO1 MH56528) to Dr. Pandey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dwivedi, Y., Pandey, G.N. (2011). Glutamatergic Neurotransmission Abnormalities and Schizophrenia. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0837-2_13

Download citation

Publish with us

Policies and ethics