Skip to main content

Neurophysiology of Cognitive Dysfunction in Schizophrenia

  • Chapter
  • First Online:
Book cover Handbook of Schizophrenia Spectrum Disorders, Volume II
  • 1610 Accesses

Abstract

Cognitive neurophysiology, the investigation of perceptual and cognitive tasks with EEG or MEG, is a key technique for the investigation of information processing in schizophrenia. In the present chapter we first provide an introduction to the techniques and signals of non-invasive electrophysiology (Part 1) and then explain its application to perceptual (2) and cognitive processes (3). We discuss some of the most widely investigated and replicated electrophysiological features of schizophrenia, including the P50, P1, MMN and P3. Recent applications of time frequency analysis techniques have allowed for a more detailed investigation of the neural mechanisms of cognition and its dysfunction through measures of oscillatory activity (4). We finally introduce some of the current approaches that combine non-invasive neurophysiology, pharmacology and genetics. We will discuss their findings in the context of cellular and molecular models of schizophrenia, particularly in relation to several neurotransmitter systems (5). We argue that cognitive neurophysiology can provide interesting intermediate phenotypes of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the recent report of Yuval-Greenberg et al. [17] the possibility of a relationship between induced gamma band activity and microsaccades should also be considered (but see also [18]).

  2. 2.

    Interestingly, Dakin et al. [55] showed that individuals with schizophrenia are less prone to the visual “contrast–contrast” illusion, which suggests that they have weaker visual contextual suppression resulting from impaired lateral inhibition. Thus, deficits in inhibitory processes might be a general deficit across sensory domains.

Abbreviations

AEP:

Auditory evoked potential

ERP:

Event-related potentials

EP:

Evoked potentials

EEG/MEG:

Electro-/Magnetoencephalography

fMRI:

functional magnetic resonance imaging

GABA:

Gamma-amino butyric acid

MMN:

Mismatch negativity

NMDA:

N-methyl-D-aspartate

NRG1:

Neuregulin 1

PV:

Parvalbumin

(SS)VEP:

Visual (steady-state) evoked potential

References

  1. Linden D (2007) What, when, where in the brain? Exploring mental chronometry with brain imaging and electrophysiology. Rev Neurosci 18(2):159–171

    PubMed  Google Scholar 

  2. Bledowski C, Cohen Kadosh K, Wibral M et al (2006) Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci 26(3):821–829

    CAS  PubMed  Google Scholar 

  3. Linden D (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11(6):563–576

    CAS  PubMed  Google Scholar 

  4. Bledowski C, Prvulovic D, Hoechstetter K et al (2004) Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci 24(42):9353–9360

    CAS  PubMed  Google Scholar 

  5. Sayers BM, Beagley HA, Henshall WR (1974) The mechansim of auditory evoked EEG responses. Nature 247(441):481–483

    CAS  PubMed  Google Scholar 

  6. Makeig S, Westerfield M, Jung TP et al (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694

    CAS  PubMed  Google Scholar 

  7. Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M (2007) Are event-related potential components generated by phase resetting of brain oscillations?. A critical discussion. Neuroscience 146(4):1435–1444

    CAS  PubMed  Google Scholar 

  8. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  9. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations?. Neuron 24(1):49–65, 111–125

    CAS  PubMed  Google Scholar 

  10. von der Malsburg C (1981) The correlation theory of brain function. Internal report: MPI biophysical chemistry; 81–82.

    Google Scholar 

  11. Fuster JM (1997) Network memory. Trends Neurosci 20(10):451–459

    CAS  PubMed  Google Scholar 

  12. Mesulam M (1994) Neurocognitive networks and selectively distributed processing. Rev Neurol (Paris) 150(8–9):564–569

    CAS  Google Scholar 

  13. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):430–433

    CAS  PubMed  Google Scholar 

  14. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18(11):4244–4254

    CAS  PubMed  Google Scholar 

  15. Gruber T, Muller MM (2005) Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cereb Cortex 15(1):109–116

    PubMed  Google Scholar 

  16. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563

    CAS  PubMed  Google Scholar 

  17. Jensen O, Kaiser J, Lachaux J (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30(7):317–324

    CAS  PubMed  Google Scholar 

  18. Butler P, Javitt D (2005) Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 18(2):151–157

    PubMed  Google Scholar 

  19. Butler P, Zemon V, Schechter I et al (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62(5):495–504

    PubMed  Google Scholar 

  20. Haenschel C, Bittner RA, Haertling F et al (2007) Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 64(11):1229–1240

    PubMed  Google Scholar 

  21. Haenschel C, Linden D, Bittner R, Singer W, Hanslmayr S (2010) Alpha phase locking predicts residual working memory performance in schizophrenia. Biol Psychiatry 68(7):595–598

    PubMed  Google Scholar 

  22. Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15(4):600–609

    PubMed  Google Scholar 

  23. Kveraga K, Boshyan J, Bar M (2007) Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 27(48):13232–13240

    CAS  PubMed  Google Scholar 

  24. Leitman D, Sehatpour P, Higgins B, Foxe J, Silipo G, Javitt D (2010) Sensory deficits and distributed hierarchical dysfunction in schizophrenia. Am J Psychiatry 167(7):818–827

    PubMed  Google Scholar 

  25. Schechter I, Butler P, Zemon V et al (2005) Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol 116(9):2204–2215

    PubMed  Google Scholar 

  26. Krishnan GP, Vohs JL, Hetrick WP et al (2005) Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 116(3):614–624

    PubMed  Google Scholar 

  27. Javitt D (2009) When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 5:249–275

    PubMed  Google Scholar 

  28. Doniger G, Foxe J, Murray M, Higgins B, Javitt D (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59(11):1011–1020

    PubMed  Google Scholar 

  29. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23(19):7407–7411

    CAS  PubMed  Google Scholar 

  30. Kemner C, Foxe J, Tankink J, Kahn R, Lamme V (2009) Abnormal timing of visual feedback processing in young adults with schizophrenia. Neuropsychologia 47(14):3105–3110

    PubMed  Google Scholar 

  31. Yeap S, Kelly S, Thakore J, Foxe J (2008) Visual sensory processing deficits in first-episode patients with Schizophrenia. Schizophr Res 102(1–3):340–343

    PubMed  Google Scholar 

  32. Yeap S, Kelly S, Sehatpour P et al (2006) Early visual sensory deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63(11):1180–1188

    PubMed  Google Scholar 

  33. Koychev I, El-Deredy W, Haenschel C, Deakin J (2010) Visual information processing deficits as biomarkers of vulnerability to schizophrenia: an event-related potential study in schizotypy. Neuropsychologia 48(7):2205–2214

    PubMed  Google Scholar 

  34. Craddock N, O’Donovan M, Owen M (2006) Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 32(1):9–16

    PubMed  Google Scholar 

  35. Yeap S, Kelly S, Reilly R, Thakore J, Foxe J (2009) Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping. J Psychiatry Neurosci 34(6):459–464

    PubMed  Google Scholar 

  36. Spencer KM, Nestor PG, Perlmutter R et al (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101(49):17288–17293

    CAS  PubMed  Google Scholar 

  37. Uhlhaas PJ, Linden DE, Singer W et al (2006) Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci 26(31):8168–8175

    CAS  PubMed  Google Scholar 

  38. Wynn JK, Light GA, Breitmeyer B, Nuechterlein KH, Green MF (2005) Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiatry 162(12):2330–2336

    PubMed  Google Scholar 

  39. Green MF, Mintz J, Salveson D et al (2003) Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biol Psychiatry 53(12):1113–1119

    PubMed  Google Scholar 

  40. Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci USA 88(20):8996–9000

    CAS  PubMed  Google Scholar 

  41. Azzena GB, Conti G, Santarelli R, Ottaviani F, Paludetti G, Maurizi M (1995) Generation of human auditory steady-state responses (SSRs). I: Stimulus rate effects. Hear Res 83(1–2):1–8

    CAS  PubMed  Google Scholar 

  42. Brenner CA, Sporns O, Lysaker PH, O’Donnell BF (2003) EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder. Am J Psychiatry 160(12):2238–2240

    PubMed  Google Scholar 

  43. Galambos R, Makeig S, Talmachoff PJA (1981) 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78(4):2643–2647

    CAS  PubMed  Google Scholar 

  44. Hari R, Hamalainen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039

    CAS  PubMed  Google Scholar 

  45. Brenner C, Krishnan G, Vohs J et al (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35(6):1065–1077

    PubMed  Google Scholar 

  46. Artieda J, Valencia M, Alegre M, Olaziregi O, Urrestarazu E, Iriarte J (2004) Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway. Clin Neurophysiol 115(3):699–709

    CAS  PubMed  Google Scholar 

  47. Kwon JS, O’Donnell BF, Wallenstein GV et al (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56(11):1001–1005

    CAS  PubMed  Google Scholar 

  48. Light G, Hsu J, Hsieh M et al (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60(11):1231–1240

    PubMed  Google Scholar 

  49. Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115(8):1863–1874

    PubMed  Google Scholar 

  50. Winterer G, Coppola R, Goldberg TE et al (2004) Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 161(3):490–500

    PubMed  Google Scholar 

  51. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27(11):683–690

    CAS  PubMed  Google Scholar 

  52. Venables P (1964) Input dysfunction in schizophrenia. Prog Exp Pers Res 72:1–47

    CAS  PubMed  Google Scholar 

  53. Braff D, Geyer M (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2):181–188

    CAS  PubMed  Google Scholar 

  54. Baker N, Adler L, Franks R et al (1987) Neurophysiological assessment of sensory gating in psychiatric inpatients: comparison between schizophrenia and other diagnoses. Biol Psychiatry 22(5):603–617

    CAS  PubMed  Google Scholar 

  55. Freedman R, Coon H, Myles-Worsley M et al (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94(2):587–592

    CAS  PubMed  Google Scholar 

  56. Martin L, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246

    CAS  PubMed  Google Scholar 

  57. Thaker G (2008) Neurophysiological endophenotypes across bipolar and schizophrenia psychosis. Schizophr Bull 34(4):760–773

    PubMed  Google Scholar 

  58. Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8(18):3889–3893

    CAS  PubMed  Google Scholar 

  59. Hong LE, Summerfelt A, McMahon RP, Thaker GK, Buchanan RW (2004) Gamma/beta oscillation and sensory gating deficit in schizophrenia. Neuroreport 15(1):155–159

    PubMed  Google Scholar 

  60. Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J (2000) Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA 97(13):7645–7650

    CAS  PubMed  Google Scholar 

  61. Johannesen JK, Bodkins M, O’Donnell BF, Shekhar A, Hetrick WP (2008) Perceptual anomalies in schizophrenia co-occur with selective impairments in the gamma frequency component of midlatency auditory ERPs. J Abnorm Psychol 117(1):106–118

    PubMed  Google Scholar 

  62. Jansen BH, Hegde A, Boutros NN (2004) Contribution of different EEG frequencies to auditory evoked potential abnormalities in schizophrenia. Clin Neurophysiol 115(3):523–533

    PubMed  Google Scholar 

  63. Uhlhaas P, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34(5):927–943

    PubMed  Google Scholar 

  64. Brockhaus-Dumke A, Mueller R, Faigle U, Klosterkoetter J (2008) Sensory gating revisited: relation between brain oscillations and auditory evoked potentials in schizophrenia. Schizophr Res 99(1–3):238–249

    PubMed  Google Scholar 

  65. Ford J, Mathalon D, Kalba S, Marsh L (2001) Pfefferbaum A. N1 and P300 abnormalities in patients with schizophrenia, epilepsy, and epilepsy with schizophrenialike features. Biol Psychiatry 49(10):848–860

    CAS  PubMed  Google Scholar 

  66. Rosburg T, Boutros N, Ford J (2008) Reduced auditory evoked potential component N100 in schizophrenia–a critical review. Psychiatry Res 161(3):259–274

    PubMed  Google Scholar 

  67. Javitt D, Jayachandra M, Lindsley R, Specht C, Schroeder C (2000) Schizophrenia-like deficits in auditory P1 and N1 refractoriness induced by the psychomimetic agent phencyclidine (PCP). Clin Neurophysiol 111(5):833–836

    CAS  PubMed  Google Scholar 

  68. Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale, NJ

    Google Scholar 

  69. Ford J, Mathalon D, Kalba S, Whitfield S, Faustman W, Roth W (2001) Cortical responsiveness during talking and listening in schizophrenia: an event-related brain potential study. Biol Psychiatry 50(7):540–549

    CAS  PubMed  Google Scholar 

  70. Whitford T, Mathalon D, Shenton M et al (2010) Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia. Psychol Med 1–11 [Epub ahead of print]

    Google Scholar 

  71. David A, Woodruff P, Howard R et al (1996) Auditory hallucinations inhibit exogenous activation of auditory association cortex. Neuroreport 7(4):932–936

    CAS  PubMed  Google Scholar 

  72. Hubl D, Koenig T, Strik W, Garcia L, Dierks T (2007) Competition for neuronal resources: how hallucinations make themselves heard. Br J Psychiatry 190:57–62

    PubMed  Google Scholar 

  73. Dierks T, Linden D, Jandl M et al (1999) Activation of Heschl’s gyrus during auditory hallucinations. Neuron 22(3):615–621

    CAS  PubMed  Google Scholar 

  74. Ford JM, Mathalon DH (2005) Corollary discharge dysfunction in schizophrenia: can it explain auditory hallucinations?. Int J Psychophysiol 58(2–3):179–189

    PubMed  Google Scholar 

  75. Javitt D (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35(6):1059–1064

    PubMed  Google Scholar 

  76. Foxe JJ, Murray MM, Javitt DC (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927

    PubMed  Google Scholar 

  77. Friston K (2005) Disconnection and cognitive dysmetria in schizophrenia. Am J Psychiatry 162(3):429–432

    PubMed  Google Scholar 

  78. Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76(1):1–23

    PubMed  Google Scholar 

  79. Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12(1):125–135

    PubMed  Google Scholar 

  80. Light G, Braff D (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62(2):127–136

    PubMed  Google Scholar 

  81. Light G, Braff D (2005) Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. Am J Psychiatry 162(9):1741–1743

    PubMed  Google Scholar 

  82. Näätänen R, Michie P (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8(2):81–136

    PubMed  Google Scholar 

  83. Imada T, Hari R, Loveless N, McEvoy L, Sams M (1993) Determinants of the auditory mismatch response. Electroencephalogr Clin Neurophysiol 87(3):144–153

    CAS  PubMed  Google Scholar 

  84. Javitt D, Grochowski S, Shelley A, Ritter W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalogr Clin Neurophysiol 108(2):143–153

    CAS  PubMed  Google Scholar 

  85. Sams M, Alho K, Näätänen R (1983) Sequential effects on the ERP in discriminating two stimuli. Biol Psychol 17(1):41–58

    CAS  PubMed  Google Scholar 

  86. Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Learn Mem Cogn 19(4):909–921

    CAS  PubMed  Google Scholar 

  87. Winkler I, Reinikainen K, Näätänen R (1993) Event-related brain potentials reflect traces of echoic memory in humans. Percept Psychophys. 53(4):443–449

    CAS  PubMed  Google Scholar 

  88. Baldeweg T, Klugman A, Gruzelier J, Hirsch S (2004) Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophr Res 69(2–3):203–217

    PubMed  Google Scholar 

  89. Haenschel C, Vernon D, Dwivedi P, Gruzelier J, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25(45):10494–10501

    CAS  PubMed  Google Scholar 

  90. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398

    CAS  PubMed  Google Scholar 

  91. Anderson L, Christianson G, Linden J (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29(22):7359–7363

    CAS  PubMed  Google Scholar 

  92. Malmierca M, Cristaudo S, Pérez-González D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17):5483–5493

    CAS  PubMed  Google Scholar 

  93. Harrison P, Weinberger D (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68, image 45

    CAS  PubMed  Google Scholar 

  94. Baldeweg T, Klugman A, Gruzelier J, Hirsch S (2002) Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiol 43(2):111–122

    PubMed  Google Scholar 

  95. Sato Y, Yabe H, Todd J et al (2003) Impairment in activation of a frontal attention-switch mechanism in schizophrenic patients. Biol Psychol 62(1):49–63

    PubMed  Google Scholar 

  96. Todd J, Michie P, Jablensky A (2003) Association between reduced duration mismatch negativity (MMN) and raised temporal discrimination thresholds in schizophrenia. Clin Neurophysiol 114(11):2061–2070

    PubMed  Google Scholar 

  97. Javitt D, Steinschneider M, Schroeder C, Arezzo J (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93(21):11962–11967

    CAS  PubMed  Google Scholar 

  98. Umbricht D, Schmid L, Koller R, Vollenweider F, Hell D, Javitt D (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147

    CAS  PubMed  Google Scholar 

  99. Lavoie S, Murray M, Deppen P et al (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 33(9):2187–2199

    CAS  PubMed  Google Scholar 

  100. Leung S, Croft R, O’Neill B, Nathan P (2008) Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls. Psychopharmacology (Berl) 196(3):451–460

    CAS  Google Scholar 

  101. Kähkönen S, Mäkinen V, Jääskeläinen I, Pennanen S, Liesivuori J, Ahveninen J (2005) Serotonergic modulation of mismatch negativity. Psychiatry Res 138(1):61–74

    PubMed  Google Scholar 

  102. Rosburg T, Marinou V, Haueisen J, Smesny S, Sauer H (2004) Effects of lorazepam on the neuromagnetic mismatch negativity (MMNm) and auditory evoked field component N100m. Neuropsychopharmacology 29(9):1723–1733

    CAS  PubMed  Google Scholar 

  103. Baldeweg T, Wong D, Stephan K (2006) Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials. Int J Psychophysiol 59(1):49–58

    PubMed  Google Scholar 

  104. Weisbrod M, Hill H, Niethammer R, Sauer H (1999) Genetic influence on auditory information processing in schizophrenia: P300 in monozygotic twins. Biol Psychiatry 46(5):721–725

    CAS  PubMed  Google Scholar 

  105. Salisbury D, Voglmaier M, Seidman L, McCarley R (1996) Topographic abnormalities of P3 in schizotypal personality disorder. Biol Psychiatry 40(3):165–172

    CAS  PubMed  Google Scholar 

  106. Klein C, Berg P, Rockstroh B, Andresen B (1999) Topography of the auditory P300 in schizotypal personality. Biol Psychiatry 45(12):1612–1621

    CAS  PubMed  Google Scholar 

  107. Salisbury D, Shenton M, McCarley R (1999) P300 topography differs in schizophrenia and manic psychosis. Biol Psychiatry 45(1):98–106

    CAS  PubMed  Google Scholar 

  108. Mathalon D, Hoffman R, Watson T, Miller R, Roach B, Ford J (2010) Neurophysiological Distinction between Schizophrenia and Schizoaffective Disorder. Front Hum Neurosci 3:70

    PubMed  Google Scholar 

  109. Doege K, Bates A, White T, Das D, Boks M, Liddle P (2009) Reduced event-related low frequency EEG activity in schizophrenia during an auditory oddball task. Psychophysiology 46(3):566–577

    CAS  PubMed  Google Scholar 

  110. Ergen M, Marbach S, Brand A, Başar-Eroğlu C, Demiralp T (2008) P3 and delta band responses in visual oddball paradigm in schizophrenia. Neurosci Lett 440(3):304–308

    CAS  PubMed  Google Scholar 

  111. Ford J, Roach B, Hoffman R, Mathalon D (2008) The dependence of P300 amplitude on gamma synchrony breaks down in schizophrenia. Brain Res 1235:133–142

    CAS  PubMed  Google Scholar 

  112. Haig AR, Gordon E, De Pascalis V, Meares RA, Bahramali H, Harris A (2000) Gamma activity in schizophrenia: evidence of impaired network binding?. Clin Neurophysiol 111(8):1461–1468

    CAS  PubMed  Google Scholar 

  113. Lee KH, Williams LM, Haig A, Goldberg E, Gordon E (2001) An integration of 40 Hz Gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 112(8):1499–1507

    CAS  PubMed  Google Scholar 

  114. Slewa-Younan S, Gordon E, Harris AW et al (2004) Sex differences in functional connectivity in first-episode and chronic schizophrenia patients. Am J Psychiatry 161(9):1595–1602

    PubMed  Google Scholar 

  115. Symond MP, Harris AW, Gordon E, Williams LM (2005) “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity?. Am J Psychiatry 162(3):459–465

    PubMed  Google Scholar 

  116. Spencer K, Niznikiewicz M, Shenton M, McCarley R (2008) Sensory-evoked gamma oscillations in chronic schizophrenia. Biol Psychiatry 63(8):744–747

    PubMed  Google Scholar 

  117. Owen M, Craddock N, O’Donovan M (2010) Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry 67(7):667–673

    CAS  PubMed  Google Scholar 

  118. Baddeley AD (1986) Working memory. Oxford University Press, London

    Google Scholar 

  119. Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 41(1):57–78

    PubMed  Google Scholar 

  120. Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153(3):321–330

    CAS  PubMed  Google Scholar 

  121. Phillips WA, Silverstein SM (2003) Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26(1):65–82, discussion 82–137

    PubMed  Google Scholar 

  122. Andreasen NC (1999) A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 56(9):781–787

    CAS  PubMed  Google Scholar 

  123. Friston KJ (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 395:68–79

    CAS  PubMed  Google Scholar 

  124. Kim J, Kwon J, Park H et al (2003) Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a[15(O)]H2O PET study. Am J Psychiatry 160(5):919–923

    PubMed  Google Scholar 

  125. Meyer-Lindenberg A, Poline J, Kohn P et al (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158(11):1809–1817

    CAS  PubMed  Google Scholar 

  126. Tan H, Sust S, Buckholtz J et al (2006) Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatry 163(11):1969–1977

    PubMed  Google Scholar 

  127. Haenschel C, Bittner R, Waltz J et al (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29(30):9481–9489

    CAS  PubMed  Google Scholar 

  128. Gold J, Fuller R, Robinson B, McMahon R, Braun E, Luck S (2006) Intact attentional control of working memory encoding in schizophrenia. J Abnorm Psychol 115(4):658–673

    PubMed  Google Scholar 

  129. Thut G, Nietzel A, Brandt S, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26(37):9494–9502

    CAS  PubMed  Google Scholar 

  130. Worden M, Foxe J, Wang N, Simpson G (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20(6):RC63

    CAS  PubMed  Google Scholar 

  131. Bachman P, Kim J, Yee C et al (2008) Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia. Schizophr Res 103(1–3):293–297

    PubMed  Google Scholar 

  132. Bachman P, Kim J, Yee C et al (2009) Efficiency of working memory encoding in twins discordant for schizophrenia. Psychiatry Res 174(2):97–104

    PubMed  Google Scholar 

  133. Luck S, Gold J (2008) The construct of attention in schizophrenia. Biol Psychiatry 64(1):34–39

    PubMed  Google Scholar 

  134. Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C (2007) Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64(1):39–45

    PubMed  Google Scholar 

  135. Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 103(52):19878–19883

    CAS  PubMed  Google Scholar 

  136. Schmiedt C, Brand A, Hildebrandt H, Basar-Eroglu C (2005) Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls. Brain Res Cogn Brain Res 25(3):936–947

    CAS  PubMed  Google Scholar 

  137. Haenschel C, Linden D (in press) Exploring intermediate phenotypes with EEG: Working memory dysfunction in schizophrenia. Behavioural Brain Research 216(2):481–495

    Google Scholar 

  138. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1):1–27

    CAS  PubMed  Google Scholar 

  139. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    CAS  PubMed  Google Scholar 

  140. Lewis D, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63(10):1372–1376

    PubMed  Google Scholar 

  141. Benes F (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry. 65(12):1003–1005

    PubMed  Google Scholar 

  142. Volk D, Austin M, Pierri J, Sampson A, Lewis D (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57(3):237–245

    CAS  PubMed  Google Scholar 

  143. Fuchs E, Zivkovic A, Cunningham M et al (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53(4):591–604

    CAS  PubMed  Google Scholar 

  144. Barros C, Calabrese B, Chamero P et al (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA 106(11):4507–4512

    CAS  PubMed  Google Scholar 

  145. Wen L, Lu Y, Zhu X et al (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA 107(3):1211–1216

    CAS  PubMed  Google Scholar 

  146. Towers SK, Gloveli T, Traub RD et al (2004) Alpha 5 subunit-containing GABAA receptors affect the dynamic range of mouse hippocampal kainate-induced gamma frequency oscillations in vitro. J Physiol 559(Pt 3):721–728

    CAS  PubMed  Google Scholar 

  147. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615

    CAS  PubMed  Google Scholar 

  148. Cunningham M, Hunt J, Middleton S et al (2006) Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci 26(10):2767–2776

    CAS  PubMed  Google Scholar 

  149. Roopun A, Cunningham M, Racca C, Alter K, Traub R, Whittington M (2008) Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophr Bull 34(5):962–973

    PubMed  Google Scholar 

  150. Vierling-Claassen D, Siekmeier P, Stufflebeam S, Kopell N (2008) Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. J Neurophysiol 99(5):2656–2671

    PubMed  Google Scholar 

  151. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    CAS  PubMed  Google Scholar 

  152. Whittington MA, Faulkner HJ, Doheny HC, Traub RD (2000) Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 86(2):171–190

    CAS  PubMed  Google Scholar 

  153. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500

    CAS  PubMed  Google Scholar 

  154. Zhang Y, Behrens M, Lisman J (2008) Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 100(2):959–965

    CAS  PubMed  Google Scholar 

  155. Grunze H, Rainnie D, Hasselmo M et al (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16(6):2034–2043

    CAS  PubMed  Google Scholar 

  156. Morrow B, Elsworth J, Roth R (2007) Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology (Berl) 192(2):283–290

    CAS  Google Scholar 

  157. Lazarewicz M, Ehrlichman R, Maxwell C, Gandal M, Finkel L, Siegel S (2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22(7):1452–1464

    PubMed  Google Scholar 

  158. Hong L, Summerfelt A, Buchanan R et al (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35(3):632–640

    PubMed  Google Scholar 

  159. Pratt J, Winchester C, Egerton A, Cochran S, Morris B (2008) Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol 153(Suppl 1):S465–470

    Google Scholar 

  160. Rowland L, Bustillo J, Mullins P et al (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162(2):394–396

    PubMed  Google Scholar 

  161. Bustillo J, Rowland L, Mullins P et al (2010) 1H-MRS at 4 tesla in minimally treated early schizophrenia. Mol Psychiatry 15(6):629–636

    CAS  PubMed  Google Scholar 

  162. Théberge J, Al-Semaan Y, Williamson P et al (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160(12):2231–2233

    PubMed  Google Scholar 

  163. Garey LJ, Ong WY, Patel TS et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65(4):446–453

    CAS  PubMed  Google Scholar 

  164. Lewis D (2009) Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues Clin Neurosci 11(3):269–280

    PubMed  Google Scholar 

  165. Spencer K (2009) The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: insights from computational modeling. Front Hum Neurosci 3:33

    PubMed  Google Scholar 

  166. Stephan K, Friston K, Frith C (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35(3):509–527

    PubMed  Google Scholar 

  167. Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31(2–3):295–301

    CAS  PubMed  Google Scholar 

  168. Durstewitz D, Seamans JK (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 64(9):739–749

    CAS  PubMed  Google Scholar 

  169. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 98(1):301–306

    CAS  PubMed  Google Scholar 

  170. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21(10):3628–3638

    CAS  PubMed  Google Scholar 

  171. Ito H, Schuman E (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circuits 1:1

    PubMed  Google Scholar 

  172. Demiralp T, Herrmann CS, Erdal ME et al (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17(5):1007–1019

    PubMed  Google Scholar 

  173. Donohoe G, Morris D, Clarke S et al (2007) Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 45(2):454–458

    PubMed  Google Scholar 

  174. Donohoe G, Morris D, De Sanctis P et al (2008) Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 63(5):484–489

    PubMed  Google Scholar 

  175. Fallgatter A, Herrmann M, Hohoff C et al (2006) DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 31(9):2002–2010

    CAS  PubMed  Google Scholar 

  176. Levin E, Wilson W, Rose J, McEvoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15(5):429–436

    CAS  PubMed  Google Scholar 

  177. Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55(8):850–858

    CAS  PubMed  Google Scholar 

  178. Krenz I, Kalkan D, Wevers A et al (2001) Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins. J Chem Neuroanat 21(3):239–246

    CAS  PubMed  Google Scholar 

  179. Wanaverbecq N, Semyanov A, Pavlov I, Walker M, Kullmann D (2007) Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. J Neurosci 27(21):5683–5693

    CAS  PubMed  Google Scholar 

  180. Lisman J, Coyle J, Green R et al (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31(5):234–242

    CAS  PubMed  Google Scholar 

  181. Song C, Murray T, Kimura R et al (2005) Role of alpha7-nicotinic acetylcholine receptors in tetanic stimulation-induced gamma oscillations in rat hippocampal slices. Neuropharmacology 48(6):869–880

    CAS  PubMed  Google Scholar 

  182. Rodriguez R, Kallenbach U, Singer W, Munk MH (2004) Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 24(46):10369–10378

    CAS  PubMed  Google Scholar 

  183. Munk M, Roelfsema P, König P, Engel A, Singer W (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259):271–274

    CAS  PubMed  Google Scholar 

  184. Herculano-Houzel S, Munk M, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19(10):3992–4010

    CAS  PubMed  Google Scholar 

  185. Szerb J (1967) Cortical acetylcholine release and electroencephalographic arousal. J Physiol 192(2):329–343

    CAS  PubMed  Google Scholar 

  186. Metherate R, Cox C, Ashe J (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci 12(12):4701–4711

    CAS  PubMed  Google Scholar 

  187. Steriade M, Dossi R, Paré D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88(10):4396–4400

    CAS  PubMed  Google Scholar 

  188. Muthukumaraswamy S, Edden R, Jones D, Swettenham J, Singh K (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 106(20):8356–8361

    CAS  PubMed  Google Scholar 

  189. Edden R, Muthukumaraswamy S, Freeman T, Singh K (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726

    CAS  PubMed  Google Scholar 

  190. Hillyard S, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61

    CAS  PubMed  Google Scholar 

  191. Herrmann C, Munk M, Engel A (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8(8):347–355

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Haenschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Haenschel, C., Linden, D. (2011). Neurophysiology of Cognitive Dysfunction in Schizophrenia. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0831-0_18

Download citation

Publish with us

Policies and ethics