Skip to main content

Reversed-Phase HPLC of Peptides – A Valuable Sample Preparation Tool in Bottom-Up Proteomics: Separation Selectivity in Single and Multi-dimensional Separation Modes

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Reversed-phase HPLC is a leading tool for peptide fractionation in proteomics. Various combinations of stationary and mobile phases are employed depending on the purpose of the separation and the detection procedure. This diversity results in significant changes in separation selectivity, which are currently not well understood. Our ongoing work, focused on collection of peptide retention data and the development of sequence specific algorithms for peptide retention prediction, reveals these differences and helps define sets of conditions where predictive models can be considered independent from chromatographic platform used. We describe our observations on peptide separation selectivity variations for a wide range of RP-HPLC conditions: C18 sorbents of different pore sizes, using trifuoroacetic/formic/heptafluorobutyric acids as ion-pairing modifiers, RP separation at pH 10, and RP separation with an alternative perfluorinated chemistry of the bonded phase. Both the charge distribution within the peptide chain and the ion-pair formation mechanisms were found to be major factors in determining the peptide separation selectivity in RP-HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert, A.J. (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499, 177–196.

    Article  CAS  Google Scholar 

  • Baczek, T., Wiczling, P., Marszall, M., Heyden, Y.V., and Kaliszan, R. (2005). Prediction of peptide retention at different HPLC conditions from multiple linear regression models. J Proteome Res 4, 555–563.

    Article  CAS  Google Scholar 

  • Browne, C.A., Bennett, H.P., and Solomon, S. (1982). The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Anal Biochem 124, 201–208.

    Article  CAS  Google Scholar 

  • Cox, J., and Mann, M. (2007). Is proteomics the new genomics? Cell 130, 395–398.

    Article  CAS  Google Scholar 

  • Craig, R., and Beavis, R.C. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.

    Article  CAS  Google Scholar 

  • Cravatt, B.F., Simon, G.M., and Yates, J.R., 3rd. (2007). The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000.

    Article  CAS  Google Scholar 

  • Dai, J., and Carr, P.W. (2005). Role of ion pairing in anionic additive effects on the separation of cationic drugs in reversed-phase liquid chromatography. J Chromatogr A 1072, 169–184.

    Article  CAS  Google Scholar 

  • Delmotte, N., Lasaosa, M., Tholey, A., Heinzle, E., and Huber, C.G. (2007). Two-dimensional reversed-phase × ion-pair reversed-phase HPLC: An alternative approach to high-resolution peptide separation for shotgun proteome analysis. J Proteome Res 6, 4363–4373.

    Article  CAS  Google Scholar 

  • Dowell, J.A., Frost, D.C., Zhang, J., and Li, L. (2008). Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80, 6715–6723.

    Article  CAS  Google Scholar 

  • Dwivedi, R.C., Spicer, V., Harder, M., Antonovici, M., Ens, W., Standing, K.G., Wilkins, J.A., and Krokhin, O.V. (2008). Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem 80, 7036–7042.

    Article  CAS  Google Scholar 

  • Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  CAS  Google Scholar 

  • Gilar, M., Jaworski, A., Olivova, P., and Gebler, J.C. (2007). Peptide retention prediction applied to proteomic data analysis. Rapid Commun Mass Spectrom 21, 2813–2821.

    Article  CAS  Google Scholar 

  • Gilar, M., Olivova, P., Daly, A.E., and Gebler, J.C. (2005). Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77, 6426–6434.

    Article  CAS  Google Scholar 

  • Gilar, M., Yu, Y.Q., Ahn, J., Fournier, J., and Gebler, J.C. (2008). Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides. J Chromatogr A 1191, 162–170.

    Article  CAS  Google Scholar 

  • Glaich, J.L., Quarry, M.A., Vasta, J.F., and Snyder, L.R. (1986). Separation of peptide mixtures by reversed-phase gradient elution. Use of flow rate changes for controlling band spacing and improving resolution. Anal Chem 58, 280–285.

    Article  Google Scholar 

  • Gorshkov, A.V., Tarasova, I.A., Evreinov, V.V., Savitski, M.M., Nielsen, M.L., Zubarev, R.A., and Gorshkov, M.V. (2006). Liquid chromatography at critical conditions: Comprehensive approach to sequence-dependent retention time prediction. Anal Chem 78, 7770–7777.

    Article  CAS  Google Scholar 

  • Guo, D., Mant, C.T., Taneja, A.K., Hodges, R.S. (1986). Prediction of peptide retention times in reversed-phase high-performance liquid chromatography II. Correlation of observed and predicted peptide retention times and factors influencing the retention times of peptides. J Chromatogr 359, 519–532.

    Article  CAS  Google Scholar 

  • Guo, D.C., Mant, C.T., and Hodges, R.S. (1987). Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-performance liquid chromatography. J Chromatogr 386, 205–222.

    Article  CAS  Google Scholar 

  • Houghten, R.A., and DeGraw, S.T. (1987). Effect of positional environmental domains on the variation of high-performance liquid chromatographic peptide retention coefficients. J Chromatogr 386, 223–228.

    Article  CAS  Google Scholar 

  • Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299–2301.

    Article  CAS  Google Scholar 

  • Klammer, A.A., Yi, X., MacCoss, M.J., and Noble, W.S. (2007). Improving tandem mass spectrum identification using peptide retention time prediction across diverse chromatography conditions. Anal Chem 79, 6111–6118.

    Article  CAS  Google Scholar 

  • Krokhin, O.V. (2006). Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-pair RP-HPLC: Application to 300- and 100-A pore size C18 sorbents. Anal Chem 78, 7785–7795.

    Article  CAS  Google Scholar 

  • Krokhin, O.V., Craig, R., Spicer, V., Ens, W., Standing, K.G., Beavis, R.C., and Wilkins, J.A. (2004). An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: Its application to protein peptide mapping by off-line HPLC-MALDI MS. Mol Cell Proteomics 3, 908–919.

    Article  CAS  Google Scholar 

  • Krokhin, O.V., and Spicer, V. (2009). Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Anal Chem 81, 9522–9530.

    Article  CAS  Google Scholar 

  • Krokhin, O.V., Ying, S., Cortens, J.P., Ghosh, D., Spicer, V., Ens, W., Standing, K.G., Beavis, R.C., and Wilkins, J.A. (2006). Use of peptide retention time prediction for protein identification by off-line reversed-phase HPLC-MALDI MS/MS. Anal Chem 78, 6265–6269.

    Article  CAS  Google Scholar 

  • Lambert, J.P., Ethier, M., Smith, J.C., and Figeys, D. (2005). Proteomics: From gel based to gel free. Anal Chem 77, 3771–3787.

    Article  CAS  Google Scholar 

  • Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., and Yates, J.R., 3rd (1999). Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17, 676–682.

    Article  CAS  Google Scholar 

  • Loboda, A.V., Krutchinsky, A.N., Bromirski, M., Ens, W., and Standing, K.G. (2000). A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: Design and performance. Rapid Commun Mass Spectrom 14, 1047–1057.

    Article  CAS  Google Scholar 

  • Mahoney, W.C. (1982). Isolation of denatured proteins and peptides by high-performance liquid chromatography. Effect of different perfluorinated acids, column length and large-pore supports. Biochim Biophys Acta 704, 284–289.

    Article  CAS  Google Scholar 

  • Meek, J.L. (1980). Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci USA 77, 1632–1636.

    Article  CAS  Google Scholar 

  • Palmblad, M., Ramstrom, M., Markides, K.E., Hakansson, P., and Bergquist, J. (2002). Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. Anal Chem 74, 5826–5830.

    Article  CAS  Google Scholar 

  • Petritis, K., Kangas, L.J., Yan, B., Monroe, M.E., Strittmatter, E.F., Qian, W.J., Adkins, J.N., Moore, R.J., Xu, Y., Lipton, M.S., et al. (2006). Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information. Anal Chem 78, 5026–5039.

    Article  CAS  Google Scholar 

  • Pfeifer, N., Leinenbach, A., Huber, C.G., and Kohlbacher, O. (2007). Statistical learning of peptide retention behavior in chromatographic separations: A new kernel-based approach for computational proteomics. BMC Bioinformatics 8, 468.

    Article  Google Scholar 

  • Put, R., Daszykowski, M., Baczek, T., and Vander Heyden, Y. (2006). Retention prediction of peptides based on uninformative variable elimination by partial least squares. J Proteome Res 5, 1618–1625.

    Article  CAS  Google Scholar 

  • Sakamoto, Y., Kawakami, N., and Sasagawa, T. (1988). Prediction of peptide retention times. J Chromatogr 442, 69–79.

    Article  CAS  Google Scholar 

  • Sasagawa, T., Okuyama, T., Teller, D.C. (1982). Prediction of peptide retention times in reversed-phase high-performance liquid chromatography during linear gradient elution. J Chromatogr 240, 329–340.

    Article  CAS  Google Scholar 

  • Schley, C., Altmeyer, M.O., Swart, R., Muller, R., and Huber, C.G. (2006). Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J Proteome Res 5, 2760–2768.

    Article  CAS  Google Scholar 

  • Shinoda, K., Sugimoto, M., Yachie, N., Sugiyama, N., Masuda, T., Robert, M., Soga, T., and Tomita, M. (2006). Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks. J Proteome Res 5, 3312–3317.

    Article  CAS  Google Scholar 

  • Snyder, L.R., and Dolan, J.W. (2006). High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model (New York, NY, Wiley).

    Book  Google Scholar 

  • Spicer, V., Yamchuk, A., Cortens, J., Sousa, S., Ens, W., Standing, K.G., Wilkins, J.A., and Krokhin, O.V. (2007). Sequence-specific retention calculator. A family of peptide retention time prediction algorithms in reversed-phase HPLC: Applicability to various chromatographic conditions and columns. Anal Chem 79, 8762–8768.

    Article  CAS  Google Scholar 

  • Strittmatter, E.F., Kangas, L.J., Petritis, K., Mottaz, H.M., Anderson, G.A., Shen, Y., Jacobs, J.M., Camp, D.G., 2nd, and Smith, R.D. (2004). Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. J Proteome Res 3, 760–769.

    Article  CAS  Google Scholar 

  • Su, S.J., Grego, B., Niven, B., and Hearn, M.T.W. (1981). High performance liquid chromatography of amino acids, peptides and proteins XXXVII. Analysis of group retention contributions for peptides separated by reversed phase high performance liquid chromatography. J Liq Chromatogr 4, 1745–1764.

    Article  CAS  Google Scholar 

  • Toll, H., Oberacher, H., Swart, R., and Huber, C.G. (2005). Separation, detection, and identification of peptides by ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry at high and low pH. J Chromatogr A 1079, 274–286.

    Article  CAS  Google Scholar 

  • Washburn, M.P., Wolters, D., and Yates, J.R., 3rd. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  CAS  Google Scholar 

  • Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.

    Article  CAS  Google Scholar 

  • Yoshida, T. (2004). Peptide separation by hydrophilic-interaction chromatography. J Biochem Biophys Methods 60, 265–280.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Technology Transfer Office at the University of Manitoba and the Natural Sciences and Engineering Research Council of Canada (O.V.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Krokhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dwivedi, R.C., Spicer, V., Krokhin, O.V. (2011). Reversed-Phase HPLC of Peptides – A Valuable Sample Preparation Tool in Bottom-Up Proteomics: Separation Selectivity in Single and Multi-dimensional Separation Modes. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_48

Download citation

Publish with us

Policies and ethics